Solar tunnel drying characteristics and mathematical modelling of tomato

Domates kurutma denemeleri İzmir, Türkiye’de gerçekleştirilmiştir. Bu amaçla yeni geliştirilen tünel tipi güneşli kurutucu tasarlanmış ve imal edilmiştir. İmal edilen güneşli kurutucu, havalı toplayıcı, kurutma odası ve hava sirkülasyon sisteminden oluşmaktadır. Havalı toplayıcıdan elde edilen ısıtılmış hava, fan aracılığıyla domateslerin üzerinden geçirilmiştir. Kurutma denemelerinde Rio Grande tip domates kullanılmıştır. Kurutma periyodu süresince, kurutma hava sıcaklığı, bağıl nem, hava debisi, güneş ışınım değeri ve kurutucunun farklı noktalarından alınan numunelerdeki kütle kayıpları düzenli olarak takip edilmiştir. Kurutma zamanının kütle kaybıyla ilişkisi bağıntılarla takip edilmiştir. Kurutma eğrileri dikkate alınarak oniki farklı matematiksel model karşılaştırılmıştır. Istatistiksel analiz sonuçlarına göre deneysel kurutma verilerine en iyi uyum sağlayanın R2 değerinin 0.9967 olduğu two-term matematiksel model olduğu görülmüştür.

Domatesin tünel tipi güneşli kurutucudaki kurutma karakteristikleri ve matematiksel modellemesi

Solar drying experiments of tomato were conducted in Izmir, Turkey. In this purpose, new type tunnel solar dryer was designed and manufactured. Solar dryer consist of an air collector, drying chamber and an air circulation system. Heated air in solar air collector was forced through the tomatoes by a blower. Rio Grande type tomato was used for drying experiments. During the drying period, drying air temperature, relative humudity, air flow rates, solar radiation, and lose of mass were measured continuously in different part of the dryer. Drying time was examined with mass ratio as exponantial and polynomial correlations. Twelve different mathematical models available in literature were compared using their coefficient of determination of estimate solar drying curves. According to statistical analysis results, the two-term drying model has shown a better fit to the experimental drying data of tomato with a coefficient of determination R2 of 0.9967 as compared to other models.

___

  • Akpinar, E., Midilli, A. & Bicer, Y., Single layer drying behaviour of potato slices in a convective cyclone dryer and mathematical modeling, Energy Conversion and Management, 44 (10), 1689-1705, 2003.
  • Aktas, T. & Polat, R., Changes in the drying characteristics and water activity values of selected pistachio cultivars during hot air drying, Journal of Food Process Engineering, 30, 607-624, 2007.
  • Ayensu, A., Dehydration of food crops using solar dryer with convective heat flow, Solar Energy, 59,121-126, 1997.
  • Bala, B.K., Mondol, M.R.A., Biswas, B.K., Das Chowdury, B.L. & Janjai, S., Solar drying of pineapple using solar tunnel drier, Renewable Energy, 28, 183- 190, 2003.
  • Condori, M., Echazu, R. & Saravia, L., Solar drying of sweet pepper and garlic using the tunnel greenhouse drier, Renewable Energy, 22, 447-460, 2001.
  • Demir, V., Gunhan, T., Yagcioglu, A. K. & Degirmencioglu, A., Mathematical modelling and the determination of some quality parameters of air-dried bay leaves, Biosystems Engineering, 88, 325-335, 2004.
  • Diamante, L. M. & Munro P. A., Mathematical modelling of the thin layer solar drying of sweet potato slices, Solar Energy, 51, 271-276, 1993.
  • Doymaz, I. & Pala, M., Hot-air drying characteristics of red pepper, Journal of Food Engineering, Volume 55, Issue 4, December 2002, Pages 331-335, 2002.
  • Doymaz, I., Convective air drying characteristics of thin layer carrots, Journal of Food Engineering, 61, 359- 364, 2004
  • Doymaz, I., Air-drying characteristics of tomatoes, Journal of Food Engineering, 78, 1291-1297. EIE, General Directorate of Electrical Power Resources Survey and Development Administration, 2006, http://www.eie.gov.tr.
  • El-Sebaii, A.A., Aboul-Enein, S., Ramadan, M.R.I. & El-Gohary, H.G., Experimental investigation of an indirect type natural convection solar dryer, Energy Conversion and Management, 43, 2251-2266, 2002.
  • Ertekin, C. & Yaldiz, O., Drying of eggplant and selection of a suitable thin layer drying model, Journal of Food Engineering, Volume 63, Issue 3, August 2004, Pages 349-359, 2004.
  • Gallali, Y.M., Abujnah, Y.S. & Bannani, F.K., Preservation of fruits and vegetables using solar dryer: a comparative study of natural and solar drying, III; chemical analysis and sensory evaluation data of the dried samples (grapes, figs, tomatoes and onions), Renewable Energy, 19, 203-212, 2000.
  • Gungor, A. & Ozbalta, N., Design of a greenhouse for solar drying of sultana grapes and experimental investigation on it, 13. İnternational Conference on Thermal Engineering and Thermogrammetry (THERMO), 18-20 June 2003, Budapest, Hungary
  • Hodge, B. K. & Taylor, R. P., Analysis and Design of Energy Systems, 3rd Ed., Prentice Hall Inc., New Jersey, 1999.
  • Karathanos, V.T. & Belessiotis, V. G., Application of a thin layer equation to drying data of fresh and semidried fruits. Journal of Agricultural Engineering Research, 74, 335-361, 1999.
  • Kaya, A., Aydin, O. & Demirtaş, C., Concentration boundry conditions in the theoretical analysis of convective drying process, , Journal of Food Process Engineering, 30, 565-577, 2007.
  • Liu, Q. & Bakker-Arkema, F. W., Stochastic modeling of grain drying: Part 2. Model development. Journal of Agricultural Engineering Research, 66, 275-280, 1997.
  • Madamba, P.S., Driscoll, R. H. & Buckle K. A., The thin layer drying characteristics of garlic slices. Journal of Food Engineering, 29, 75-97, 1996.
  • Menges, H.O. & Ertekin, C., Mathematical modeling of thin layer drying of Golden apples, Journal of Food Engineering, Volume 77, Issue 1, November 2006, Pages 119-125, 2006.
  • Midilli, A. & Kucuk, H., Mathematical modelling of thin layer drying of pistachio by using solar energy,Energy Conversion and Management, 44, 1111-1122, 2003.
  • Okos, M. R., Narsimhan, G., Singh, R. K. & Weitnauer A.C., Food dehydration, In. D.R. Heldman, and D. B. Lund (Eds.), Handbook of Food Engineering, 462, 1992.
  • Ozdemir, M. & Devres, Y. O., The thin layer drying characteristics of hazelnuts during roasting, Journal of Food Engineering, 42, 225-233, 1999.
  • Pal, U. S. & Chakraverty, A., Thin layer convection drying of mushrooms. Energy Conversion and Management, 38(2), 107-113, 1997.
  • Sacilik, K., Keskin, R. & Elicin, A.K., Mathematical modelling of solar tunnel drying of thin layer organic tomato, Journal of Food Engineering, 2005
  • Sarsavadia, P. N., Sawhney, R. L., Pangavhane, D. R. & Singh, S. P., Drying behaviour of brined onion slices. Journal of Food Engineering, 40, 219-226, 1999.
  • Sharaf-Elden, Y. I., Blaisdell, J. L. & Hamdy, M. Y., A model of ear corn drying, Transactions of the ASAE, 5,1261-1265, 1980.
  • Sharma, G.P., Verma R.C. & Patharep., Mathematical modeling of infrared radiation thin layer drying of onion slices, Journal of Food Engineering, Volume 71, Issue 3, December 2005, Pages 282-286, 2005.
  • Sogi, D.S., Shivhare, U.S., Garg S.K. & Bawa, A.S., Water sorption isotherm and drying characteristic of tomato seeds, Biosystems Engineering, 84, 297-301, 2003.
  • Tiris, Ç., Özbalta, N., Tiris, M. & Dinçer, İ., Experimental testing of a new solar dryer, International Journal of Energy Research, 18, 483-490, 1994.
  • Togrul, I.T. & Pehlivan, D., Mathematical modelling of solar drying of apricots in thin layers, Journal of Food Engineering, 55, 209-216, 2002.
  • Yaldiz, O., Ertekin, C. & Uzun, H.I., Mathematical modelling of thin layer solar drying of sultana grapes, Energy, 26, 457-465, 2001.
  • Yılmaz, H.N., Ozbalta, N. & Gungor, A., Performance analysis of a solar cabinet drier for tomatoes, 7. International Congress on Agricultural Mechanisation and Energy, 26 – 27 May 1999, Adana, Turkey.