SICAK İKLİM ŞARTLARI ALTINDA İÇ DİZAYN SICAKLIĞI, TERMAL ÖZELLİKLER VE YALITIM KALINLIĞININ BELİRLENMESİ

Bu çalışmanın temel amacı, yıl boyunca ısıl performans açısından farklı yönlendirmelere göre belirlenen iç dizayn sıcaklıkları ile ısıtma ve soğutma periyotlarını, ısı transfer karakteristikleri ve optimum yalıtım kalınlığının hesabında kullanmaktır. Bu çalışma, Türkiyenin Adana şehrinin iklim şartları için dinamik termal şartlar altında gerçekleştiriliyor. İlk olarak; 20, 22, 24 oC iç dizayn sıcaklıklarına göre yalıtımsız ve yalıtımlı duvarlar için ısıtma ve soğutma geçiş yükleri belirleniyor. Minimum ısıtma ve soğutma geçiş yükleri açısından bütün yıl üzerinden belirlenen iç dizayn sıcaklıklarını kullanarak değişik duvar yönlendirmeleri için yıllık geçiş yükleri, yıllık ortalama dinamik termal direnç, yıllık ortalama faz kayması ve sönüm oranı belirleniyor. Daha sonra ısıtma ve soğutma periyotları üzerinden belirlenen bu yükler yalıtım kalınlığının optimizasyonu için kullanılıyor. Yalıtımsız duvarda güney, kuzey, doğu ve batı yönleri için yıllık ısıtma yükü sırasıyla 73.54, 138.44, 117.62 ve 117.62 MJ/m2 olarak elde edilirken, yıllık soğutma yükü sırasıyla 221.37, 152.81, 229.14 ve 229.14 MJ/m2 olarak elde edilmiştir. Adananın iklim şartları altında soğutma yükünün ısıtma yükünden daha baskın olduğu görülüyor. Ayrıca, en kısa soğutma periyodunun kuzeyde elde edildiği, en uzun soğutma periyodunun ise güneyde elde edildiği görülüyor. Adana için optimum yalıtım kalınlığı; güney, kuzey, doğu ve batı yönleri için sırasıyla 8.4, 8.0, 9.2 and 9.2 cm olarak elde edilmiştir. Sonuçlar iç dizayn sıcaklığı ve yalıtımın; ısıtma, soğutma ve toplam geçiş yükleri üzerinde önemli bir etkiye sahip olduğunu gösteriyor. Ayrıca, sonuçlar duvar yönlendirmenin ısıtma ile soğuma periyotları üzerinde ve dinamik termal direnç, faz kayması ve optimum yalıtım kalınlığı üzerinde önemli bir etkiye sahip olduğunu da gösteriyor.

DETERMINATION OF INDOOR DESIGN TEMPERATURE, THERMAL CHARACTERISTICS AND INSULATION THICKNESS UNDER HOT CLIMATE CONDITIONS

The base purpose of this work is to use interior design temperatures and the heating and cooling periods, which are determined according to different wall orientations in terms of thermal performance throughout the year, in the calculation of heat transfer characteristics and optimum insulation thickness. This work is realized under dynamic thermal conditions for the climatic conditions of Adana, Turkey. Firstly, the transmission loads for both heating and cooling are determined for uninsulated and insulated walls according to indoor design temperatures: 20, 22, 24 oC. Annual transmission loads, annual average dynamic thermal resistance, annual average time lag, and decrement factor for various wall directions are calculated by using indoor design temperatures determined over the whole year from minimum heating and cooling transmission loads point of view. Then, these loads determined overheating and cooling periods are used for the optimization of insulation thickness. In the uninsulated wall, yearly cooling load is obtained to be 221.37, 152.81, 229.14 and 229.14 MJ/m2 for the south, north, east and west orientations, respectively while yearly heating load is obtained to be 73.54, 138.44, 117.62 and 117.62 MJ/m2. It is observed that the cooling load is more dominant than the heating load under the climate conditions of Adana. It is also observed that the longest cooling period is obtained in south orientation while the shortest cooling period is obtained in north orientation. The optimum thickness of the insulation for Adana is obtained to be 8.4, 8.0, 9.2 and 9.2 cm for south, north, east and west orientations, respectively. The results indicate that the indoor design temperatures and insulation have a significant effect on heating, cooling and total transmission loads. Besides, the results reveal that the wall orientation has an important effect on heating and cooling periods, dynamic thermal resistance, time lag and optimum insulation thickness.

___

  • Akan A. E., 2021, Determination and Modeling of Optimum Insulation Thickness for Thermal Insulation of Buildings in All-City Centers of Turkey, International Journal of Thermophysics, 42, 49, 1-34.
  • Aktemur C., Bilgin F. and Tunçkol S., 2021, Optimization on the Thermal Insulation Layer Thickness in Buildings with Environmental Analysis: an Updated Comprehensive Study for Turkey’s all Provinces, Journal of Thermal Engineering, 7, 5, 1239–1256.
  • Al-Sanea S.A., Zedan M. F., and Al-Ajlan S. A., 2003, Heat Transfer Characteristics and Optimum Insulation Thickness for Cavity Walls, Journal of Thermal Envelope and Building Science, 26, 3, 285-307.
  • Al-Sanea S.A., and Zedan M. F., 2002, Optimum Insulation Thickness for Building Walls in a Hot-Dry Climate, International Journal of Ambient Energy, 23, 3, 115-126.
  • Al-Sanea S.A., Zedan M. F. and Al-Hussain S. N., 2013, Effect of Masonry Material and Surface Absorptivity on Critical Thermal Mass in Insulated Building Walls, Applied Energy, 102, 1063-1070.
  • Al-Sanea S.A., Zedan M. F. and Al-Ajlan, S. A., 2005, Effect of Electricity Tariff on The Optimum Insulation-Thickness in Building Walls as Determined by a Dynamic Heat-Transfer Model, Applied Energy, 82, 313-330.
  • Barrau J., Ibanez M. and Badia F., 2014, Impact of the İnsulation Materials’ Features on The Determination of Optimum Insulation Thickness, International Journal of Energy and Environmental Engineering, 5, 2-3, 1-9.
  • Bolattürk A., 2008, Optimum Insulation Thicknesses For Building Walls with Respect to Cooling and Heating Degree-Hours in the Warmest Zone of Turkey, Building and Environment, 43, 1055-1064.
  • Bolattürk A., 2006, Determination of Optimum Insulation Thickness for Building Walls with respect to Various Fuels and Climate Zones in Turkey, Applied Thermal Engineering, 26, 1301-1309.
  • Çomaklı K. and Yüksel B., 2003, Optimum Insulation Thickness of External Walls for Energy Saving, Applied Thermal Engineering, 23, 473-479.
  • Çomaklı K. and Yüksel B., 2004, Environmental Impact of Thermal Insulation Thickness in Buildings, Applied Thermal Engineering, 24, 933-940.
  • Daouas N., Hassen Z. and Aissia H. B., 2010, Analytical Periodic Solution for The Study of Thermal Performance and Optimum Insulation Thickness of Building Walls in Tunisia, Applied Thermal Engineering, 30, 319-326.
  • Daouas N., 2011, A Study on Optimum Insulation Thickness i Walls and Energy Savings in Tunisian Buildings based on Analytical Calculation of Cooling and Heating Transmission Loads, Applied Energy, 88, 156-164.
  • Dombaycı Ö. A., Gölcü M. and Pancar Y., 2006, Optimization of Insulation Thickness for External Walls for Different Energy-Sources, Applied Energy, 83, 9, 921-928.
  • Dombaycı Ö. A., 2007, The Environmental Impact of Optimum Insulation Thickness for External Walls of Buildings, Energy and Buildings, 42, 3855-3859.
  • Dombaycı Ö. A., Atalay Ö., Acar S. G., Ulu E. Y. and Ozturk H. K., 2017, Thermoeconomic Method for Determination of Optimum Insulation Thickness of External Walls for The Houses: Case Study for Turkey, Sustainable Energy Technologies and Assessments, 22, 1–8.
  • Duffie J. A., & Beckman W. A., 1991, Solar Engineering Of Thermal Processes, John Wiley and Sons, inc., New York.
  • Ertürk M., 2016, A New Approach to Calculate The Energy Saving Per Unit Area and Emission Per Person in Exterıor Wall of Building using Different Insulation Materıals and Air Gap, Journal of the Faculty of Engineering and Architecture of Gazi University, 31(2), 395-406.
  • Ertürk M., 2017, A New Model for Exergetic Optimum Insulation Thickness, International Journal of Exergy, 22, 3, 309-330.
  • Hasan A., 1999, Optimizing Insulation Thickness for Buildings using Life Cycle Cost, Applied Energy, 63, 115-124.
  • Huo H., Jing C. and Huo H., 2015, Effect of Natural Ventilation on Transmission Load of Building External Walls and Optimization of Insulation Thickness, Journal of thermal science and technology, 10, 2, 1-17.
  • Ibrahim M., Ghaddar N. and Ghali K., 2012, Optimum Location And Thickness of Insulation Layers for Minimizing Building Energy Consumption, Journal of Building Performance Simulation, 5, 6, 384-398.
  • Kaynakli O., 2008, A Study on Residential Heating Energy Requirement and Optimum Insulation Thickness, Renewable Energy, 33, 1164-1172.
  • Kaynaklı O., Yüce C., Dogan O., and Kaynaklı Z., 2015, A Study on Determınatıon of Optımum Thermal Insulatıon Thıckness usıng Life Cycle Cost Analysis, International Journal of Advances in Mechanical and Civil Engineering, 2, 6, 1-5.
  • Kontoleon K. J., Theodosiou ThG. and Tsikaloudaki K. G., 2013, The Influence of Concrete Density and Conductivity on Walls’ Thermal Inertia Parameters Under a Variety of Masonry and Insulation Placements, Applied Energy, 112, 325–337.
  • Kurt H., 2010, The Usage of Air Gap in The Composite Wall for Energy Saving and Air Pollution, Environmental Progress and Sustainable Energy 30, 450-458.
  • Mahlia T. M. I. and Iqbal A., 2010, Cost Benefits Analysis and Emission Reductions of Optimum Thickness and Air Gaps for Selected Insulation Materials for Building Walls Maldives, Energy, 35, 2242-2250.
  • Nematchoua M. K., Ricciardi P., Reiter S., and Yvon A., 2017, A Comparative Study on Optimum Insulation Thickness of Walls and Energy Savings in Equatorial and Tropical Climate, International Journal of Sustainable Built Environment, 6, 170-182.
  • Ozel M., 2011, Effect of Wall Orientation on The Optimum Insulation Thickness by Using a Dynamic Method, Applied Energy, 88, 2429-2435.
  • Ozel M., 2013a, Thermal, Economical and Environmental Analysis of Insulated Building Walls in a Cold Climate. Energy Conversion and Management, 76, 674-684.
  • Ozel M., 2013b, Determination of Optimum Insulation Thickness Based on Cooling Transmission Load for Building Walls in a Hot Climate, Energy Conversion and Management, 66, 106-114.
  • Ozel, M., & Pihtili, K. (2007). Optimum Location and Distribution of Insulation Layers on Building Walls with Various Orientations. Building and Environment, 42, 3051-3059.
  • Ozel, M. (2016). Effect of Indoor Design Temperature on The Heating and Cooling Transmission Loads. Journal of Building Engineering, 7, 46–52.
  • Ozkahraman H. T. and Bolattürk A., 2006, The Use of Tuff Stone Cladding in Buildings for Energy Conservation, Construction and Building Materials, 20, 435-440.
  • Özel G., Açıkkalp E., Görgün B., Yamık H. and Caner N., 2015, Optimum Insulation Thickness Determination Using The Environmental and Life Cycle Cost Analyses based Entransy Approach, Sustainable Energy Technologies and Assessments, 11, 87–91.
  • Ramin H., Hanafizadeh P. and Akhavan-Behabadi M. A., 2016, Determination of Optimum Insulation Thickness in Different Wall Orientations and Locations in Iran, Advances in Building Energy Research, 10, s2, 149-171.
  • Sisman N., Kahya E., Aras N. and Aras H., 2007, Determination of Optimum Insulation Thicknesses of The External Walls and Roof (Ceiling) for Turkey’s Different Degree-Day Regions, Energy Policy, 35, 5151-5155.
  • State Meteorological Station, Records for weather data, Turkey, 2007-2017.
  • Sundarama, A. S. and Bhaskaran A., 2014, Optimum Insulation Thickness of Walls for Energy-Saving in Hot Regions of India, International Journal of Sustainable Energy, 33, 1, 213–226.
  • Threlkeld J. L., 1998, Thermal environmental engineering. Englewood Cliffs,NJ: Prentice-Hall.
  • Yıldız A., Gürlek G., Erkek M. and Özbalta N., 2008, Economical and Environmental Analyses of Thermal Insulation Thickness in Buildings, Journal of Thermal Science and technology, 28, 2, 25-34.
  • Yu J., Yang C., Tian L. and Liao D., 2009, A Study on Optimum Insulation Thicknesses of External Walls in Hot Summer and Cold Winter Zone of China, Applied Energy, 86, 2520-2529.
  • Zenginis D. G. and Kontoleon K. J., 2018, Influence of Orientation, Glazing Proportion and Zone Aspect Ratio on The Thermal Performance of Buildings During The Winter Period, Environmental Science and Pollution Research, 25, 27, 26736-26746.
Isı Bilimi ve Tekniği Dergisi-Cover
  • ISSN: 1300-3615
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1977
  • Yayıncı: TÜRK ISI BİLİMİ VE TEKNİĞİ DERNEĞİ
Sayıdaki Diğer Makaleler

GÜNEŞ HAVUZLARINDA ISI ÇEKME ORANININ BELİRLENMESİ

Haci SOĞUKPINAR, İsmail BOZKURT

DİK KANAL İÇERİSİNDEKİ KARIŞIK TAŞINIM İLE ISI TRANSFERİNİN YARI SİLİNDİRİK AKIŞ ENGELLERİ KULLANILARAK İYİLEŞTİRİLMESİNİN SAYISAL OLARAK İNCELENMESİ

Sedat ÖZDEMİR, Mustafa KILIÇ, Tamer ÇALIŞIR, Şenol BAŞKAYA

ÖLÇEKLENDİRİLMİŞ BİR METRO İSTASYONUNDA KÜÇÜK ÖLÇEKLİ SIVI HAVUZ YANGINLARININ YANGIN TASARIM EĞRİSİ SEÇİMİ

Umut Barış YILMAZ, Oğuz TURGUT, Nuri YÜCEL, Muhammed İlter BERBEROĞLU

KOMPAKT BİR ISI DEĞİŞTİRİCİSİNDE GRAFEN BAZLI NANO AKIŞKANLARIN EKSERJİ ANALİZİ

Ferhat KILINÇ, Cihan Zeki UYGUN

AKTİF KARBON KAPLAMALI SOĞUTUCULARIN ANALİZ VE OPTİMİZASYONU

A. Alperen GÜNAY

MODÜLER HELYUM REAKTÖRÜNÜN KAZA DURUMUNUN ZAMANA BAĞLI ISIL AKIŞ ANALİZİ

Ömür AKBAYIR

k-kL TÜRBÜLANS MODELİNİN UYGULAMASI, DOĞRULAMASI VE GiRDAP YAKALAMA YETENEKLERİNİN DEĞERLENDİRİLMESİ

Erdem DİKBAŞ, Özgür Uğraş BARAN

ISI TAŞINIMI İÇİN YAPISAL OLMAYAN AĞLARDA BİR HIZLANDIRILMIŞ SÜREKSİZ GALERKİN METDU: FORMÜLASYONU VE DOĞRULANMASI

Ali KARAKUS

BİR BENZİN MOTORUNDA EMME HAVASINA SU EKLENMESİNİN MOTOR PERFORMANSINA VE EGZOZ EMİSYONLARINA ETKİLERİNİN DENEYSEL OLARAK İNCELENMESİ

Derya SOYSAL, Zehra ŞAHİN, Orhan DURGUN

MEME VE KARACİĞER DOKULARINDA TEK VE ÇİFT YUVALI ANTEN KULLANILARAK YAPILAN MİKRODALGA KANSER TEDAVİSİNİN NÜMERİK ANALİZİ

Aykut EREN, Zeynep AYTAÇ, Oğuz TURGUT, Burak TIĞLI