An experimental and numerical study of laminar natural convection in a differentially-heated cubical enclosure

Kubik kapalı hacim içerisinde havanın doğal taşınım hareketleri deneysel ve sayısal olarak incelenmiştir.200x200x200mm3boyutlarında kübik bir hacim ele alınmıştır. Hacmin dikey duvarlarından biri sıcak, karşı taraftakisoğuk ve diğer duvarları adyabatik olarak kabul edilmiştir. Üç duvar alüminyumdan geri kalan üç duvar ısıyadayanıklı camdan imal edilmiştir. Deneylerde sıcak duvarın sıcaklığı elektrikli rezistans ile sabit tutulmuştur. Soğukduvarın sıcaklığı çevre havası ile soğutularak sabit tutulmuştur. Hız ölçümleri için Parçacık Görüntülemeli Hız ölçümü(PIV) kullanılmış, laminer akımda Rayleigh sayısı 1.3x107için üç boyutlu nümerik çözümlemede Fluent CFD paketprogramı kullanılmıştır. Sayısal ve deneysel sonuçlar karşılaştırılmış ve sonuçların uyum içinde olduğu görülmüştür.Normalize edilmiş hız karakterleri gösterilmiştir.

Farklı sıcaklıkta kübik kapalı hacim içinde laminer doğal taşınımın deneysel ve sayısal incelenmesi

Natural convection of air in a cubical cavity was investigated experimentally and numerically. A cubicalenclosure of 200x200x200 mm3dimensions was considered. One vertical wall of the cavity was hot, the opposite onewas cold and the rest of the walls were adiabatic. Three walls were made of aluminum, whereas the remaining threewalls were made of heat-resistant glass. Temperature of the hot wall was kept constant by means of an electrical heaterand the cold wall was cooled by ambient air in the experiments. Particle Image Velocimetry (PIV) was used forvelocity measurements and Fluent CFD software package was employed for the numerical solution of three- dimensional laminar flow equations at a Rayleigh number of 1.3x107 . The numerical and experimental results werecompared and found to be in general agreement with each other. Suitability of a characteristic velocity for normalizingvelocity data obtained was demonstrated.

___

  • Ahmed, G. R., Yovanovich, M. M., Numerical study of natural convection from discrete heat sources in a vertical square enclosure, Journal of Thermo Physics, 6, 121-127, 1992.
  • Amara, S. B., Laguerrea, O., Mojtabi, M. C. C., Lartigue, B., Flick, D., PIV measurement of the flow field in a domestic refrigerator model: Comparison with 3D simulations, International Journal of Refrigeration, 31, 1328–1340, 2008.
  • Bairi, A., Nusselt–Rayleigh correlations for design of industrial elements: Experimental and numerical investigation of natural convection in tilted square air filled enclosures, Energy Conversion and Management, 49, 771–782, 2008.
  • Bilgen, E., Natural convection in cavities with a thin fin on the hot wall, International Journal of Heat and Mass Transfer, 48, 3493–3505, 2005.
  • Calcagni, B., Marsili, F., Paroncini, M., Natural convective heat transfer in square enclosures heated from below, Applied Thermal Engineering, 25, 2522– 2531, 2005.
  • Corvaro, F., Paroncini, M., Experimental analysis of natural convection in square cavities heated from below with 2D-PIV and holographic interferometry techniques, Experimental Thermal and Fluid Science, 31, 721-739, 2007.
  • Dixit, H. N., Babu, V., Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method, International Journal of Heat and Mass Transfer, 49, 727–739, 2006.
  • Dol, H. S., Hanjalic, K., Computational study of turbulent natural convection in a side-heated near-cubic enclosure at a high Rayleigh number, National Aerospace Laboratory NLR-TP 467, 2000.
  • Fluent Inc., Computational Fluid Dynamics Software 6.2.16 ed., New Hampshire, 2005.
  • Frederick, R. L., Quiroz, F., On the transition from conduction to convection regime in a cubical enclosure with a partially heated wall, International Journal of Heat and Mass Transfer, 44, 1699-1709, 2000.
  • Ganguli, A. A., Pandit, A. B., Joshi, J. B., CFD simulation of heat transfer in a two-dimensional vertical enclosure, Chemical Engineering Research and Design, 87, 711–727, 2009.
  • Gelfgat, B. A. Y., Bar-Yoseph, P. Z., Yarın, A. L., Stability of multiple steady states of convection in laterally heated cavities, Journal of Fluid Mechanics, 388, 315-334, 1999.
  • Ha, M. Y., Jung, M. J., A numerical study on three- dimensional conjugate heat transfer of natural convection and conduction in a differentially heated cubic enclosure with a heat generating cubic conducting body, International Journal of Heat and Mass Transfer, 43, 4229-4248, 2000.
  • Kurekci, N. A., Investigation of velocity and temperature fields in cooled and/or heated enclosures, Ph. D. Thesis (in Turkish), Yildiz Technical University, Department of Mechanical Engineering, Istanbul, 2006.
  • Kwak, H. S., Kuwahara, K., Hyun, J. M., Resonant enhancement of natural convection heat transfer in a square enclosure, International Journal of Heat and Mass Transfer, 41, 2837-2846, 1996.
  • Laguerre, O., Amara, S. B., Moureh, J., Flick, D., Numerical simulation of air flow and heat transfer in domestic refrigerators, Journal of Food Engineering, 81, 144–156, 2007.
  • Laguerre, O., Amara, S. B., Mojtabi, M. C. C., Lartigue, B., Flick, D., Experimental study of air flow by natural convection in a closed cavity: Application in a domestic refrigerator, Journal of Food Engineering, 85, 547–560, 2008.
  • Leal, M. A., Machado, H. A., Cotta, R. M., Integral transform solution of transient natural convection in enclosures with variable fluid properties, International Journal of Heat and Mass Transfer, 43, 3977-3990, 2000.
  • Leong, W. H., Hollands, K. G. T., Brunger, A. P., Experimental Nusselt numbers for a cubical cavity Benchmark problem in natural convection”, International Journal of Heat and Mass Transfer, 42, 1979-1989, 1999.
  • Mamun, M. A. H., Natural convection heat transfer and flow field inside a cubical cavity, Ph. D. Thesis, University of Waterloo, Department of Mechanical Engineering, Canada, 2003.
  • Mamun, M. A. H., Johnson, D. A., Hollands, K. G. T., Leong, W. H., PIV measurements of the flow field inside an enclosed cubical cavity in natural convection, 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics, July 12-15, Lisbon, 2004.
  • Meyer, K. E., Larsen, P. S., Guillard F., Westergaard, C. H., Temperature and velocity fields in natural convection by PIV and LIF, Proceedings of 11th Int. Symposium on Applications of Laser Technology to Fluid Mechanics, Lisbon, Portugal, 2002.
  • Peng, Y., Shu, C., Chew, Y. T., A 3D Incompressible thermal lattice Boltzmann Model and its application to simulate natural convection in a cubic cavity, Journal of Computational Physics, 193, 260-274, 2003.
  • Raffel, M., Willert, C.E., Wereley, Kompenhans, J., Particle Image Velocimetry, Springer Press, Berlin, 1998.
  • Ramesh, N., Venkateshan, S. P., Experimental study of natural convection in a square enclosure using differential interferometer, International Journal of Heat and Mass Transfer, 44, 1107-1117, 2000.
  • Schmidt, D. J., Buoyancy-induced flows within a two- dimensional, square enclosure, MSc Thesis, Clarkson University, Department of Mechanical and Aeronautical Engineering, Canada, 1996.
Isı Bilimi ve Tekniği Dergisi-Cover
  • ISSN: 1300-3615
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1977
  • Yayıncı: TÜRK ISI BİLİMİ VE TEKNİĞİ DERNEĞİ