Fish Biomarkers, Suitable Tools For Water Quality Monitoring

A large number of biomarkers and indicator organisms have been suggested for the assessment of ecotoxicity of man-made compounds on aquatic environments. The physiological and biochemical indices in fishes are sensitive for detecting potential toxic effects, and also are obvious from the same reports that studies on the impact of pollutants on the physiological and biochemical status of aquatic organisms. In an attempt to define and measure the effect of pollutants on an ecosystem, biomarkers have attracted a lot of interest. The underlying principle of the biomarker approach is the analysis of an organism’s physiological or biochemical response to pollutant exposure. The measurement of biochemical and physiological parameters is a diagnostic tool commonly used in aquatic toxicology and bio-monitoring, so Hematological and immunological parameters are suitable biomarkers in mercury studies. During stress, fish respond in a number of ways in order to regain homeostasis and two important physiological processes which are modulated when fish are exposed to stress, are hormonal status and immune function. In this paper, our previous research's on effects of different pollutants (heavy metals, pesticides, nano particles, organic pollutants and etc.) on many fish species (marine and freshwater) was studied to detect new biomarkers (enzymatic, hormonal, immunological, hematological, histopathological and etc.) for water quality monitoring. In this study we examined markers of hematology, enzyme, hormone and histopathology in different fishes. The aim of this study was to test a multi-trial biomarker approach for evaluating toxicological risk due to the major toxicant in the water, using fishes as bio-indicator organism. The main objectives of this researches were: to identify the tissues and biological materials useful for biomarker studies; to evaluate various biochemical biomarkers in different tissues; to identify the most suitable biomarkers for evaluating chemical stress due to the contaminants explored in this study. 

___

  • Abou EL-Naga, E. H.; EL-Moselhy, K. M.; Hamed, M. A. 2005. Toxicity of cadmium and copper and their effect on some biochemical parameters of marine fish Mugil seheli. Egyptian. J. Aquat. Res., 31 (2), 60-71.
  • Adhikari, S., Sarkar, B., Chatterjee, A., Mahapatra, C.T., Ayyappan, S., 2004. Effects of cypermethrin and carbofuran on certain hematological parameters and prediction of their recovery in a freshwater teleost; Labeo rohita (Hamilton). Ecotoxicol. Environ. Saf. 58, 220–226.
  • Affonso, E.G., Polez, V.L.P., Correˆ a, C.F., Mazon, A.F., Araujo, M.R.R., Moraes, G., Ratin, F.T., 2002. Blood parameters and metabolites in the teleosts fish Colossoma macropomum exposed to sulfide or hypoxia. Comp. Biochem. Physiol. C 133, 375–382.
  • Basa, Siraj, P.; Usha Rani, A. 2003. Cadmium induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Eco. Toxicol. Environ. Saf., 56 (2), 218 – 221.
  • Blaise, C., Gagne´, F., Pellerin, J., Hansen, P.D., Trottier, S., 2002. Molluscan shellfish biomarker study of the Quebec, Canada aguenay fjord with the soft-shell clam, Mya arenaria. Environmental Toxicology 17, 170–186.
  • Boudou, A., Ribeyre, F., 1997. Aquatic ecotoxicology: from the ecosystem to the cellular and molecular levels. Environ. Health Perspect. 105 (Suppl. 1), 21-35.
  • Boening, D. W. 2000. Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40 :13351351.
  • Daintith, J., 1996. A Dictionary of Chemistry, third ed. Oxford University Press, New York.
  • Di Giulio, R.T., Habig, C., Gallagher, E.P., 1993. Effect of black rock harbor sediments on indices of biotransformation, oxidative stress, and DNA integrity in channel catfish. Aquatic Toxicology 26, 1–22.
  • Díez, S., 2008. Human health effects ofmethylmercury exposure. Rev. Environ. Contam.
  • Toxicol. 198, 113–132.
  • Depledge, M. H. & Fossi, M. C. 1994. Ecotoxicology, 3, 161-172.
  • Depledge, M.H., 1993. The rational basis for the use of biomarkers as ecotoxicological tools. In: Fossi, M.C., Leonzio, C. (Eds.), Nondestructive Biomakers in Higher Vertebrates. Lewis, Boca Raton, Florida.
  • Devlin, E.W., 2006. Acute toxicity, uptake and histopathology of aqueous methyl mercury to fathead minnow embryos. Ecotoxicology 15,97–110.
  • Eisler and Gardener, G. R. 1973. Acute toxicology to an estuarine teleost of mixtures of cadmium, copper and zinc salts. J. Fish. Biol., 5: 131–142.
  • Farombi, E. O.; Adelowo, O. A.; Ajimoko. Y. R., 2007. Biomarkers of oxidative stress and heavy metal levels as indicators of environmental pollution in African Cat fish (Clarias gariepinus) from Nigeria ogun river. Int. J. Environ. Res. Public Health., 4 (2), 158-165.
  • Farkas, A., Salanki, J.; Specziar, A. 2002. Relation between growth and the heavy metal concentration in organs of bream Abramis brama L. populating lake Balaton. Arch.
  • Environ. Contam. Toxicol., 43 (2), 236-243.
  • Ferrando, S., Malsano, M., Parrino, V., Ferrando, T., Girosi, L., Tagliaferro, G., 2006. Gut morphology and metallothionein immunoreactivity in Liza aurata from different heavy metal polluted environments. Ital. J. Zool. 73, 7–14.
  • Flessas, C., Coulillard, Y., Pinel-Alloul, B., St-Cur, L. and Campbell, P. G. C. 2000. Metal concentrations in two freshwater gastropods (Mollusca) in the St. Lawrence River and relationship with environmental contamination. Can. J. Fish. Aquat. Sci. 57, 126– 137.
  • Gill, T. S., and Epple, A. 1993. Stress related changes in the hematological profile of the American eel (Anguilla rostrata). Ecotoxicol. Environ. Saf. 25, 227-235
  • Gundacker, C., 1999. Tissue specific heavy metal (Cd, Pb, Cu, Zn) deposition in a natural population of the zebra mussel Dreissena polymorpha Pallas. Chemosphere 38, 3339–3356.
  • Heath, A. G. 1995. Water Pollution and Fish Physiology.’’ Lewis, CRC Press, Boca Raton, FL.
  • Hinton, D. E. & D. J. Laurén. 1990. Liver structural alterations accompanying chronic toxicity in fishes: potentioal biomarkers of exposure. Pp. 51-65. In: McCarthy, J.F. & L.R. Shugart (Eds.). Biomarkers of Environmental Contamination. Boca Raton, Lewis Publishers.
  • Karr, J.R., 1993. Defining and assessing ecological integrity: beyondwater quality. Environmental Toxicology and Chemistry 12, 1521-1531.
  • Kim, S.H., Sharma, R.P., 2005. Mercury alters endotoxin induced inflammatory cytokine expression in liver: differential role of P 38 and extra cellular signal-regulated mitogen activated protein kinases. Immunopharmacology and Immunotoxicology 27 (1), 123–135.
  • Lemaire, P., Berhaut, J., Lemaire-Gony, S., Lafaurie, M., 1992. Ultrastructural changes induced by benzo[a] pyrene in sea bass (Dicentrarchus labrax) liver and intestine: importance of the intoxication route. Environ. Res. 57 (1), 59–72.
  • Lim, C., Klesius, P.H., Li, M.H., Robinson, E.H., 2000. Interaction between dietary levels of iron and vitamin C on growth, hematology, immune response and resistance of channel cat fish (Ictalurus punctatus) to Edwardsiella ictalury challenge. Aquaculture 185, 313–327.
  • Matthiessen Peter, 2003. Endocrine disruption in marine fish. Pure Appl. Chem., Vol. 75, Nos. 11–12, pp. 2249–2261.
  • Morgado, C.R.A. Santos 1, R. Jacinto, D.M. Power. 2007 .Regulation of transthyretin by thyroid hormones in fish. General and Comparative Endocrinology 152: 189–197.
  • National Research Council (1987). Environ. Hlth Perspect., 74, 3-9.
  • Nielsen, J. B.; Hultman, P. 2002. Mercury-induced autoimmunity in mice. Environ.Health Perspect. Suppl. 5, 110: 877 – 881.
  • Oikari A, Jimenez B. 1992. Effects of hepatoxicants on the induction of microsomal monooxygenase activity in sunfish liver by betanapthaflavone and benzo (a) pyrene. Ecotoxicol Environ Saf. 23:89– 102.
  • Olaifa, F. G.; Olaifa, A. K.; Onwude, T. E. 2004. Lethal and sublethal effects of copper to the African Cat fish (Clarias gariepnus). Afr. J. Biomed. Res., 7, 65-70.
  • Rees T. 1993. Glutathione-S-transferase as a biological marker of aquatic contamination. M.Sc Thesis in Applied Toxicology, Portsmouth University, U.K.
  • Risher, John F., Amler, Sherlita N., 2005. Mercury exposure: evaluation and intervention, the inappropriate use of chelating agents in diagnosis and treatment of putative mercury poisoning. Neurotoxicology 26 (4), 691–699.
  • Schlenk, D., 2003. Use of biochemical endpoints to determine relationships between contaminants and impaired fish health in a freshwater stream. Human Ecology and Risk Assessment 9, 59-66.
  • Stegeman, J. J., Brouwer, M., Di Giulio, R. T., Forlin, L., Fowler, B. A., Sandersen, B. M. & Van Veld, P. A. 1992. Biomarkers: Biochemical, Physiological, and Histological Markers of Anthropogenic Stress. Lewis, Boca Raton, Florida, pp, 235-336.
  • Steuerwald, U.; Weibe, P.; Jorgensen, P.; Bjerve, K.; Brock, J.; Heinzow, B.; Budta-Jorgensen, E.; Grandjean, P.: Maternal seafood diet, Methylmercury exposure and neonatal neurologic function. J. Pediatr., 2000, 5, 599 – 605.
  • Stohs, S.J., Bagchi, D., 1995. Oxidative mechanisms in the toxicity of metals ions. Free Radical Biology and Medicine 2, 321–336.
  • Sutton, D. J and Paul B. Tchounwou. 2006. MercuryInduced Externalization of Phosphatidylserine and Caspase 3 Activation in Human Liver Carcinoma (HepG2) Cells. Int. J. Environ. Res. Public Health. 3(1), 38-42
  • Sweet, L. I.; Zelikoff, J. F. 2001. Toxicology and immunotoxicology of mercury: a review in fish and humans. J. Toxicol Environ. Health B Crit. Rev. 2, 161 – 205.
  • Thophon, S., M. Kruatrachue, E. S. Upathan, P. Pokethitiyook, S. Sahaphong, S. Jarikhuan. 2003. Histopathological alterations of white seabass, Lates calcarifer in acute and subchronic cadmium exposure. Environmental Pollution, 121: 307-320.
  • Tyler, C.R., Jobling, S., Sumpter, J.P., 1998. Endocrine disruption in wildlife: a critical review of the evidence. Crit. Rev. Toxicol. 28, 319-361.
  • Teles M, Santos MA, Pacheco M. 2005. Physiological and genetic responses of European eel (Anguilla anguilla L.) to short-term chromium or copper exposure — influence of preexposure to a PAH-like compound. Environ Toxicol. 20:92–9.
  • Toguyeni A, Fauconneau B, Boujard T, Fostier A, Kuhn ER, Mol KA, Baroiller JF. 1997. Feeding behaviour and food utilisation in tilapia, Oreochromis niloticus: effect of sex ratio and relationship with the endocrine status. Physiol Behav. 62:273–9.
  • Viarengo, A., 1985. Biochemical effects of trace metals. Marine Pollution Bulletin 16, 153–158.
  • Wendelaar-Bonga, S.E., 1997. The stress response in fish. Physiol. Rev. 77, 591_625.
  • WHO, 1991. Environmental Health Criteria 118: Inorganic Mercury –Environmental Aspects. World Health Organization, Geneva, Switzerland, pp. 115–119.
  • Zalups, R.K., 2000. Molecular interactions with mercury in the kidney. Pharmacol. Rev. 52, 113–143.