Düşük Enlemlerde İyonosferin E bölgesinde Düşük Frekanslı Alfvèn Dalgalarının Faz ve Grup Hızlarının Matematiksel Karekteristiği

Bu çalışmada, dikkatimizi esasen Iyonosferin E bölgesinde düşük frekanslı dalgaların faz ve grup hızlarının matematiksel analizini araştırmaya yönlendirdik. Elde edilen gözlemsel bulgulara göre, kinematik ve manyetik viskozite ihmal edildiğinde faz ve grup hızları böyle dalgalar için eşit değerlere sahip olmaktadır. Diğer yandan kinematik ve manyetik viskozite göz önüne alındığında ise faz ve grup hızları farklı değerler almaktadır. Grup hızını analitik olarak analiz etmek oldukça zor olduğundan onun nümerik çözümlerini sıradaki araştırmamızda ele almayı planlıyoruz. Buradan hareketle sunulan bu araştırmamızda, temel olarak düşük frekanslı Alfvèn dalgaları için faz hızının özelliklerine ve orta enlemlerde iyonosferin E-bölgesi (140 Km) için doğasının analiz edilmesine odaklanılmıştır. 21 Mart ve 21 Haziran’da faz hızlarının büyüklüklerinin değişim trendinin kosinüs fonksiyonun davranışına benzediği görülmüştür. Öte yandan, karşılık gelen çözümlerin reel ve sanal kısımların büyüklüklerinin 21 Mart için elde edilenlerden daha büyük olduğu elde edilmiştir. Bu durumun esas nedeni iyonosferde Haziran ayındaki daha yüksek elektron üretimi olabilir.

The Mathematical characteristic of the Phase and Group Velocities of Pure Alfvèn Wave in the E Region of the Ionosphere for Low Latitudes

In this study, we mainly focus our attention on mathematical analysis of the phase and group velocities of low-frequency Alfvèn waves in the E region of the ionosphere. According to observational conclusions it is known that the phase and group velocities of such waves are equal to each other when kinematic and magnetic viscosity are ignored. On the other hand, these velocities have different velocities when we take kinematic and magnetic viscosities into account. Since it is very difficult to analyze the group velocity analytically, we plan to discuss its numerical solutions in our future investigation. Thus, in the present study, we focus on the features of phase velocity of low-frequency of Alfvèn wave and analyze its nature in the E region of the ionosphere for low latitudes. we see that the trend of change of magnitudes of the phase velocities on on March 21st and June21st resembles to the behavior of cosine function Moreover, it is concluded that the magnitudes of real and imaginary parts of the corresponding solutions are larger than the ones obtained for March 21st. The ma in reason of this case may be higher electron production in the ionosphere in June.

___

  • Budden, K.G. (1988). The Propagation of Radio Waves, Cambridge University Press, Cambridge.
  • Budden, K.G., and Stott, G.F. (1980). Rays in magneto-ionic theory-II, Journal of Atmospheric and Solar-Terrestrial Physics, 42, 791–800.
  • Hunsucker, R.D. and Hargreaves, J. K. (2003). The High-Latitude Ionosphere and its Effects on Radio Propagation, Cambridge University Press, 1-50.
  • Kaladze, T., Tsamalashvili, L., Kaladze, D., Ozcan, O., Yesil, A., and Inc, M. (2019). Modified KdV equation for magnetized Rossby waves in a zonal flow of the ionospheric E-layer, Physics Letters A, 383 (32), 125888. Ratcliffe, J. A. (1959). The magneto-ionic theory and its applications to the ionosphere. University Press.
  • Richard, F. (2014). The physics of Plasma, CRC Press, New York, pp. 50–140.
  • Rishbeth, H. (1973). Physics and chemistry of the ionosphere. Contemporary Physics, 14(3), 229-249.
  • Rishbeth, H. and Garriot, O.K. (1969). Introduction to Ionospheric Physics, Academic Press, New York
  • Sagir, S., and Yesil. A. (2018). The Relation Between the Refractive Index of the Equatorial Ionospheric F2 Region and Long-Term Solar Indices, Wireless Personal Communications, 102 (1), 31-40.
  • Sağir, S., Yaşar, M., and Atici, R. (2019). The Relationship between Dst, IMF-Bz and Collision Parameters for O+ + N2 → NO+ + N Reactive Scattering in the Ionosphere, Geomagnetism and Aeronomy, 59, 1003–1008. Swanson, D.G. (1989). Plasma waves, Academic Press, New York.
  • Timucin, E., Unal, I., and Yesil, A. (2019). The Effect of the Midlatitude Electron Density Trough on the Ionospheric Conductivities, Iranian Journal of Science and Technology, Transactions A: Science, 43 (1), 297-307.
  • Timocin, E., Yesil, A., and Unal, I. (2014). The effect of the geomagnetic activity to the hourly variations of ionospheric foF2 values at low latitudes, Arabian Journal of Geosciences, 7 (10), 4437-4442.
  • Unal, I., Senalp, E.T., Yeşil, A., Tulunay, Y., and Tulunay, E. (2011). Performance of IRI-based ionospheric critical frequency calculations concerning forecasting, Radio Science 46 (01), 1-10.
  • Yasar, M. (2021). The Change Of Diffusion Processes For O+ + N2 → No+ + N Reactıon In The Ionospheric F Region During The Solar Eclipse Over Kharkiv. Thermal Science, 25, Special Issue 1, 51-56.
  • Yasar, M. (2021). The Solar Eclıpse Effect On Dıffusıon Processes Of O+ + O2 → O2+ + O Reactıon For The Upper Ionosphere Over Kharkiv. Thermal Science, Vol. 25, Special Issue 1, 57-63.
  • Yesil, A., Sagir S., and Kurt, K. (2016). The Behaviour of the Classical Diffusion Tensor for Equatorial Ionospheric, Plasma, Journal of Science, 13, 123-127.
  • Yesil, A., and Sagir, S. (2019). Updating Conductivity Tensor of Cold and Warm Plasma for Equatorial Ionosphere F2-Region in The Northern Hemisphere, Iranian Journal of Science and Technology, Transactions A: Science 43 (1), 315-320.
  • Yesil, A. (2006). The Effect of the Electron Temperature on the Electric Polarization Coefficient of Ionospheric Plasma, International Journal of Science & Technology, 1 (2), 125-130.
  • Yesil, A., and Kurt, K. (2019). Calculation of electric field strength in the ionospheric F-region, Thermal Science 22, 159-164.
  • Whitten, R.C., and Popoff, I.G. (1971). Fundamentals of Aeoronmy, John Willey and Sons, New York.
International Journal of Pure and Applied Sciences-Cover
  • ISSN: 2149-0910
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2015
  • Yayıncı: Munzur Üniersitesi