Nikel-Metal Hidrit Pilinin Aşırı Şarj Durumuna Elektrokimyasal Empedans Spektroskopisi Cevabı

Bu çalışmada ikincil piller arasında yaygın olarak kullanılan AAAHR03 model 1,2 V nominal potansiyelde ve 950 mAh kapasiteye sahip ticari nikel-metal hidrit (Ni-MH) pilinin, açık devre potansiyeli, aşırı şarj durumu ve farklı potansiyellerdeki 10 kHz – 10 mHz frekans aralığında empedans ölçümleri incelenip eşdeğer elektrik devresi ile birlikte değerlendirilmiştir. Bu tekrar şarj edilebilir pilin empedans cevapları ve geliştirilen eşdeğer devre modeli ile pilin önemli fiziksel parametreleri saptanmıştır. Aşırı şarj pilin kötüye kullanımının bir örneği olmasına rağmen empedans ölçümleri sonucunda Ni-MH pilinin 1,5 V’a kadar aşırı şarja dayanıklı olduğu gözlemlenmiştir. Ayrıca, geliştirilen modelin, enerji ihtiyacının karşılanması ve gelecekte üretilecek pillerin tasarımı için etkili olabileceği ve büyük bir potansiyele sahip olduğu ortaya konmuştur.

Electrochemical Impedance Spectroscopy Response of Nickel-Metal Hydride Battery to Overcharge Condition

In this study, open circuit potential, impedance measurements in the frequency range of 10 kHz – 10 mHz at different potentials including overcharge, and equivalent electrical circuit of the commercial AAAHR03 model nickel-metal hydride (Ni-MH) battery with 1.2 V nominal potential and 950 mAh capacity were evaluated. With the impedance responses of this rechargeable battery and the developed equivalent circuit model, the important physical parameters of the battery were determined. Even though overcharging is a case of battery abuse, as a result of impedance measurements, it has been observed that the Ni-MH battery is resistant to overcharging up to 1.5 V. In addition, it has been demonstrated that the developed model has great potential and can be effective for meeting energy needs and for the design of batteries to be produced in the future.

___

  • [1] Vincent, C., & Scrosati, B. (1997). Modern Batteries. Intro to Electrochemical Power Sources. Butterworth-Heinemann.
  • [2] Dell, R. M., Rand, D. J., & Bailey, Jr., R. (2001). Batteries - Their History And Development. R. M. Dell, D. A. Rand, & J. R. Bailey içinde, Understanding Batteries (s. 1). Cambridge: The Royal Society of Chemistry.
  • [3] Buchmann, I. (2001). Batteries in a portable world: a handbook on rechargeable batteries for non-engineers. Richmond, B.C: Cadex Electronics Inc.
  • [4] Nickel Metal Hydride (Ni-MH) Handbook and Application Manual. Energizer:http://data.energizer.com/pdfs/nickelmetalhydride_appman.pdf (Erişim tarihi: 15.11.2022).
  • [5] Huggins, R. (2010). Energy Storage. Springer US
  • [6] Zhu, Y., Zhu, W., Davis, Z., & Tatarchuk, B. (2016). Simulation of Ni-MH Batteries via an Equivalent Circuit. Advances in Physical Chemistry, 10-21.
  • [7] Shigekazu, Y., & Kwo-hsiung, Y. (2016). Capacity Degradation Mechanisms in Nickel/Metal Hydride Batteries. Batteries, 2-3.
  • [8] Erol, S. (2020). Process Model Development of Lithium-ion Batteries—An Electrochemical Impedance Spectroscopy Simulation. Sakarya University Journal of Science, 24, 6, 1191-1197.
  • [9] Erol, S. (2021). Comparative Study of Impedance Spectroscopy between Nickel-Metal Hydride and Lithium-ion Batteries. European Journal of Science and Technology, 28, 144-151.
  • [10] Erol, S. (2022). A Statistical Design Approach on Electrochemical Impedance Spectroscopy of NMC Li-Ion Battery. Journal of the Electrochemical Society, 169, 10, 100503.