Four-Headed Arrow Shaped Dual Band Perfect Absorbers for Biosensing Applications

In this study, a novel perfect absorber (PA) array based on four-headed arrow nanoparticles for biosensing applications in mid-infrared regime is presented. Proposed PA array has a dual-band spectral response, and the locations of resonances can be adjusted by varying the geometrical dimensions of the structure. Nearly unity absorbance is obtained from the PA array for both resonances. Different dielectric spacers (MgF2, SiO2, and Al2O3) are used to investigate the effects of dielectric spacer on the absorbance characteristics of proposed PA array. Absorbance characteristics of PA array are analyzed by using finite difference time domain (FDTD) method. High field enhancement is achieved by the interaction of the sharp corners of arrow nanoparticles. Linear correlation between the resonance frequencies and the refractive index of cladding mediums is determined. Due to the high refractive index sensitivity and near-field enhancement, and nearly unity absorbance, the proposed dual-band PA array with adjustable spectral responses can be useful for biosensing applications in mid-infrared regime. 

___

  • Lubkowski G., Hirtenfelder F., Schuhmann R. and Weiland T. 3D full-wave field simulations of double negative metamaterial macrostructures, Proc. of Metamaterials, 2007, pp. 731–734.
  • Liu N., Mesch M., Weiss T., Hentschel M. and Giessen H. Infrared perfect absorber and its application as plasmonic sensor, Nano Lett., Vol. 10, Number 7, 2010, pp. 2342-2348.
  • Hedayati M. K., Javaherirahim M., Mozooni B., Abdelaziz R., Tavassolizadeh A., Chakravadhanula V. S. K., Zaporojtchenko V., Strunkus T., Faupel F. and Elbahri M. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials, Adv Mater, Vol. 23, 2011, pp. 5410–5414.
  • Fang Z., Zhen Y. R., Fan L., Zhu X. and Nordlander P. Tunablewideangle plasmonic perfect absorber at visible frequencies, Phys Rev B, Vol. 85, 2012, pp. 245401.
  • Jamali A. A. and Witzigmann B. Plasmonic Perfect Absorbers for Biosensing Applications, Plasmonics, Vol.9, 2014, pp. 1265-1270
  • Hedayati M. K., Faupel F. and Elbahri M. Tunable broadband plasmonic perfect absorber at visible frequency, Appl Phys A, Vol. 109, 2014, pp. 769–773
  • Landy N. I., Sajuyigbe S., Mock J. J., Smith D. R. and Padilla W. J. Perfect metamaterial absorber, Phys Rev. Lett., Vol. 100, Number 207402, 2008, pp. 1–4.
  • Wen Q. Y., Zhang H. W., Yang Q. H., Chen Z., Zhao B. H., Long Y. and Jing Y. L. Perfect metamaterial absorbers in microwave and terahertz bands, Metamaterial, 2012, pp. 501–512.
  • Cattoni A., Ghenuche P., Gosnet A. M. H., Decanini D., Chen J., Pelouard J. L. and Collin S. λ3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography, Nano Lett, Vol. 11, 2011, pp. 3557–3563.
  • Diem M., Koschny T. and Soukoulis C. M. Wide-angle perfect absorber/thermal emitter in the terahertz regime, Phys Rev B, Vol. 79, 2009, pp. 033101-033104.
  • Li G., Chen X., Li O., Shao C., Jiang Y., Huang L., Ni B., Hu W. and Lu W., A novel plasmonic resonance sensor based on an infrared perfect absorber, J. Phys. D: Appl. Phys., Vol. 45, 2012, pp. 205102.
  • Zhang B., Zhao Y., Hao Q., Kiraly B., Khoo I. C., Chen S. and Huang T. J. Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array, Optics Express, Vol. 19, Number 16, 2011, pp. 15221- 15228.
  • Chen K., Adato R. and Altug H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy, ACS Nano, Vol. 6, Number 9, 2012, pp. 7998–8006.
  • You J. B., Lee W. J., Won D. and Yu K., Multiband perfect absorbers using metal-dielectric films with optically dense medium for angle and polarization insensitive operation, Optics Express, Vol. 22, Number 7, 2014, pp. 8339- 8348.
  • Cetin A. E., Korkmaz S., Durmaz H., Aslan E., Kaya S., Paiella R. and Turkmen M. Quantification of Multiple Molecular Fingerprints by Dual-Resonant Perfect Absorber, Advanced Optical Materials, 2016 (accepted).
  • The numerical simulations are carried out using a finite-difference-time-domain package (Lumerical FDTD Solutions). [Online]. Available: www.lumerical.com
  • Palik E.D. Handbook of Optical Constants of Solids, Academic, FL, 1985