Rapid detection of green pea adulteration in ground pistachio nuts using near and mid-infrared spectroscopy

Rapid detection of green pea adulteration in ground pistachio nuts using near and mid-infrared spectroscopy

Near-infrared (NIR) diffuse reflectance and Mid-infrared-attenuated total reflectance (MIR-ATR) spectroscopy were evaluated to determine the dried green pea seed adulteration in ground pistachio nuts. Sixty-three samples (51 for calibration and 12 for external validation sets) of ground pistachio nuts were deliberately adulterated with varying levels of dried green pea seeds (ranging from 0 to 50% (w/w)). Subsequently, both NIR and MIR-ATR spectra of the samples were collected separately. The quantitative predictions of green pea ratio in the samples were achieved using PLSR (Partial Least Squares Regression). Based on the PLSR models, SEP (Standard error of prediction) values of the models were 2.55 and 9.14% for NIR and MIR-ATR, respectively. The rPred (Correlation coefficient of prediction) values of the models were 0.99 and 0.80 for NIR and MIR-ATR, respectively. Additionally, the nondimensional values of RPD (Residual Predictive Deviation) for NIR and MIR-ATR spectra were calculated as 5.7 and 1.6, respectively. These results showed that the NIR-based models provided a distinct advantage over MIR-ATR-based models in accurately estimating the ratio of the dried green pea seeds in binary mixtures. Therefore, NIR spectroscopy has the potential and could be implemented in the routine applications of green pea detection in ground pistachio nuts.

___

  • Aboul-Enein, Y., Bunaciu, A., & Fleschin, S. (2014). Evaluation of the protein secondary structures using Fourier Transform Infrared Spectroscopy. Gazi University Journal of Science, 27(1), 637-644.
  • Asensio, L., González, I., García, T., & Martín, R. (2008). Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA). Food Control, 19(1), 1-8.
  • Barth, A. (2007). Infrared spectroscopy of proteins. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767(9), 1073-1101.
  • Bulló, M., Juanola-Falgarona, M., Hernández-Alonso, P., & Salas-Salvadó, J. (2015). Nutrition attributes and health effects of pistachio nuts. British Journal of Nutrition, 113(S2), S79-S93.
  • Cautela, D., Laratta, B., Santelli, F., Trifirò, A., Servillo, L., & Castaldo, D. (2008). Estimating bergamot juice adulteration of lemon juice by high-performance liquid chromatography (HPLC) analysis of flavanone glycosides. Journal of Agricultural and Food Chemistry, 56(13), 5407-5414.
  • Çağlar, A., Tomar, O., Vatansever, H., & Ekmekçi, E. (2017). Antepfıstığı (Pistacia vera L.) ve insan sağlığı üzerine etkileri. Akademik Gıda, 15(4), 436-447.
  • Çavuş, F., Us, M. F., & Güzelsoy, N. A. Assesing Pistachio Nut (Pistacia vera L.) Adulteration with Green Pea (Pisum sativum L.) by Untargeted Liquid Chromatography-(quadrupole-time of flight)-Mass Spectrometry Method and Chemometrics. Gıda ve Yem Bilimi Teknolojisi Dergisi, (19), 34-41.
  • Chavan, U. D., Shahidi, F., Bal, A. K., & McKenzie, D. B. (1999). Physico-chemical properties and nutrient composition of beach pea (Lathyrus maritimus L.). Food Chemistry, 66(1), 43-50.
  • Cuadrado, M. U., De Castro, M. L., Juan, P. P., & Gómez-Nieto, M. A. (2005). Comparison and joint use of near infrared spectroscopy and Fourier transform mid infrared spectroscopy for the determination of wine parameters. Talanta, 66(1), 218-224.
  • Dreher, M. L. (2012). Pistachio nuts: composition and potential health benefits. Nutrition reviews, 70(4), 234-240.
  • Eksi-Kocak, H., Mentes-Yilmaz, O., & Boyaci, I. H. (2016). Detection of green pea adulteration in pistachio nut granules by using Raman hyperspectral imaging. European Food Research and Technology, 242(2), 271-277.
  • Guo, H., Kimura, T., & Furutani, Y. (2013). Distortion of the amide-I and-II bands of an α-helical membrane protein, pharaonis halorhodopsin, depends on thickness of gold films utilized for surface-enhanced infrared absorption spectroscopy. Chemical Physics, 419, 8-16.
  • Htoon, A., Shrestha, A. K., Flanagan, B. M., Lopez-Rubio, A., Bird, A. R., Gilbert, E. P., & Gidley, M. J. (2009). Effects of processing high amylose maize starches under controlled conditions on structural organisation and amylase digestibility. Carbohydrate Polymers, 75(2), 236-245.
  • Jouppila, K., Kansikas, J., & Roos, Y. H. (1998). Factors affecting crystallization and crystallization kinetics in amorphous corn starch. Carbohydrate Polymers, 36(2-3), 143-149.
  • Kashaninejad, M., & Tabil, L. G. (2011). Pistachio (Pistacia vera L.). In: Postharvest biology and technology of tropical and subtropical fruits. (Woodhead Publishing, 218-247).
  • Kropf, U., Golob, T., Nečemer, M., Kump, P., Korošec, M., Bertoncelj, J., & Ogrinc, N. (2010). Carbon and nitrogen natural stable isotopes in Slovene honey: adulteration and botanical and geographical aspects. Journal of Agricultural and Food Chemistry, 58(24), 12794-12803.
  • Küçüköner, E., & Yurt, B. (2003). Some chemical characteristics of Pistacia vera varieties produced in Turkey. European Food Research and Technology, 217(4), 308-310.
  • MacMahon, S., Begley, T. H., Diachenko, G. W., & Stromgren, S. A. (2012). A liquid chromatography–tandem mass spectrometry method for the detection of economically motivated adulteration in protein-containing foods. Journal of Chromatography A, 1220, 101-107.
  • Pu, Y.Y., O’Donnell, C., Tobin, J., & O’Shea, N. (2020). Review of near-infrared spectroscopy as a process analytical technology for real-time product monitoring in dairy processing. International Dairy Journal (In Press).
  • Ratnayake, W. S., Hoover, R., & Warkentin, T. (2002). Pea starch: composition, structure and properties—a review. Starch‐Stärke, 54(6), 217-234.
  • Rodriguez-Saona L., Ayvaz H., Wehling R.L. (2017) Infrared and Raman Spectroscopy. In: Nielsen S. (eds) Food Analysis. Food Science Text Series. (Springer, Cham, 107-127).
  • Rodriguez-Saona, L. E., Giusti, M. M., & Shotts, M. (2016). Advances in infrared spectroscopy for food authenticity testing. In Advances in food authenticity testing (pp. 71-116). Woodhead Publishing.
  • Ruiz-Matute, A. I., Soria, A. C., Martínez-Castro, I., & Sanz, M. L. (2007). A new methodology based on GC− MS to detect honey adulteration with commercial syrups. Journal of Agricultural and Food Chemistry, 55(18), 7264-7269.
  • Tiwari, B. K., Brunton, N. P., & Brennan, C. (2013). Handbook of plant food phytochemicals: sources, stability and extraction. John Wiley & Sons.
  • Tulbek, M. C., Lam, R. S. H., Asavajaru P., & Lam, A., (2017). Pea: A sustainable vegetable protein crop. In: Sustainable protein sources. (Academic Press, 145-164).
  • Valand, R., Tanna, S., Lawson, G., & Bengtström, L. (2020). A review of Fourier Transform Infrared (FTIR) spectroscopy used in food adulteration and authenticity investigations. Food Additives & Contaminants: Part A, 37(1), 19-38.
  • Williams, P.C. (2001). Implementation of near-infrared technology. In: Near-Infrared Technology in the Agricultural and Food Industries. (American Association of Cereal Chemists, Minnesota, 145-169).
  • Zhao, Y., Zhang, B., Chen, G., Chen, A., Yang, S., & Ye, Z. (2014). Recent developments in application of stable isotope analysis on agro-product authenticity and traceability. Food chemistry, 145, 300-305.
International Journal of Agriculture Forestry and Life Sciences-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2017
  • Yayıncı: Volkan OKATAN
Sayıdaki Diğer Makaleler

Impact of climate change on paddy-wheat production and the local adaptation practices by farmers of Bardiya, Nepal

Hridesh SHARMA, Sandeep CHAPAGAİN, Sudeep MARASİNİ

Determination of tomato leafminer (Tuta absoluta) population in open field and greenhouse tomato growing areas on Turkish Republic of Northern Cyprus

Murat HELVACI

Obtaining activated carbon from grape pulp and removing of reactive blue 19 from the aqueous solution

Bahdişen GEZER

Determination with geographic information systems (GIS) of the existing Vineyard Areas in Hizan District of Bitlis Province

Nurhan KESKİN, Siyami KARACA, Faruk ALAEDDİNOĞLU, Sıddık KESKİN, Adnan DOĞAN, Cuneyt UYAK, Ruhan İlknur GAZİOGLU ŞENSOY, Bulut SARGIN, Birhan KUNTER

Growth, yield and forage quality influence of intecropping and fertilization schemes on adlay (Coix lacryma-jobi L.) ratoon

Nello GORNE

Determination of the yield performance and partial seed vernalization response of wheat varieties in late spring sowing

Bekir ATAR

The Importance of bioconversions of today

Davut KARAHAN, Kenan Sinan DAYISOYLU

Rapid detection of green pea adulteration in ground pistachio nuts using near and mid-infrared spectroscopy

Riza TEMİZKAN, Muhammed Ali DOĞAN, Orhan ATAKAN, Burak Alptuğ NAZLIM, Hüseyin AYVAZ

Growing conditions effect on fruit phytochemical composition and anti-microbial activity of plum (cv. Black Diamond)

Kerem MERTOĞLU, Aysel GÜLBANDILAR, İbrahim BULDUK

Distribution channel structure of greenhouse capia peppers (Capia piperis) production and analysis of its problems: The case of Kaş district of Antalya province

Sümeyye ÖZENÇ, Mevlüt GÜL