Microsatellite analysis in some watermelon (Citrullus lanatus) genotypes

Conservation of genetic resources is essential for the continuation of future crop production. Watermelon (Citrul-lus lanatus), a member of Cucurbitaceae, is widely distributed in tropical and subtropical regions. The aim of this study was to reveal the genetic relationships with the help of microsatellite markers in a watermelon collection free of unnecessary repetitions, and to determine the success of SSR (Simple Sequence Repeats) primers developed in cucurbits. In this study, 96 watermelon genotypes with good agronomic characteristics were used among the geno types collected from different regions of Turkey and purified up to the S4-S6 (self-pollination) stage. In the study, 33 SSR primer pairs were used to determine the genetic relationship between watermelon genotypes. In the study, a total of 67 bands were obtained with SSR primers. As a result of UPGMA (Unweighted Pair Group Method Using Arithmetic Averages) analysis, genotypes showed similarity at the level of 0.84-1.00. The number of alleles detected per primer varied between 1 and 6. In terms of the total number of alleles obtained, CMCT44 (5 units) and Cgb4767 (6 units) loci produced the most alleles. Primers with high polymorphism rate and allele excess were determined, and the possibilities for use in genetic stability analyses, variety differentiation and other genetic analyses were determined.

___

  • Anonymous, (2019). “FAOSTAT, Watermelon production statistics”, http://www.fao.org/statistics/en/, July 2021
  • Aslan, N., Coskun, O.F., Dalda-Sekerci, A., & Gulsen, O. (2021). Moleküler markörler kullanarak çerezlik kabaklarda (Cucurbita pepo L.) saflık düzeylerinin tahmin edilmesi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 26 (3), 759-769. https://doi.org/10.37908/mkutbd.995779
  • Collins, J.K., Perkins-Veazie, P., & Roberts, W. (2006). Lycopene: from plants to humans. HortScience, 41(5), 1135–1144. https://doi.org/10.21273/HORTSCI.41.5.1135
  • Coskun, O.F., Gulsen, O., Dalda-Sekerci, A., Yetisir, H., & Pınar, H. (2017). Bazı çerezlik kabak hatlarında SSR markır analizi. Akademik Ziraat Dergisi, 6, 151-156.
  • Danin-Poleg, Y., Reis, N., Tzuri, G., & Katzir, N. (2001). Development and characterization of microsatellite markers in Cucumis. Theoretical and Applied Genetics, 102(1), 61–72. https://doi.org/10.1007/s001220051618
  • Düzyaman, E. (2013). Karpuz Hakkında Herşey, Hasad Yayıncılık, Ankara.
  • Gama, R.N., Santos, C.A.F., Dias, R.D.C.S., & Souza, F.F. (2013). Molecular characterization of watermelon cultivars using microsatellite markers. Horticultura Brasileira, 31(4), 522–527. https://doi.org/10.1590/S0102-05362013000400003
  • Guerra ‐ Sanz, J.M. (2002). Citrullus simple sequence repeats markers from sequence databases. Molecular Ecology Notes, 2 (3), 223–225. https://doi.org/10.1046/j.1471-8286.2002.00200.x
  • Hwang, J.H., Ahn, S.G., Oh, J.Y., Choi, Y.W., Kang, J.S., & Park, Y.H. (2011). Functional characterization of watermelon (Citrullus lanatus L.) EST–SSR by gel electrophoresis and high resolution melting analysis. Scientia Horticulturae, 130(4), 715–724. https://doi.org/10.1016/j.scienta.2011.08.014
  • Karaman, K., Dalda-Şekerci, A., Yetişir, H., Gülşen, O., & Coskun, O.F. (2018). Molecular, morphological and biochemical characterization of some Turkish bitter melon (Momordica charantia L.) genotypes. Industrial Crops and Products, 123, 93–99. https://doi.org/10.1016/j.indcrop.2018.06.036
  • Kırac, H., Dalda-Sekerci, A., Coskun, O.F., & Gulsen, O. (2022). Morphological and molecular characterization of garlic (Allium sativum L.) genotypes sampled from Turkey. Genetic Resources and Crop Evolution, 1-9. https://doi.org/10.1007/s10722-022-01343-4
  • Kong, Q., Chen, J., Liu, Y., Ma, Y., Liu, P., Wu, S., & Bie, Z. (2014). Genetic diversity of Cucurbita rootstock germplasm as assessed using simple sequence repeat markers. Scientia Horticulturae, 175, 150–155. https://doi.org/10.1016/j.scienta.2014.06.009
  • Kwon, Y.S. (2013). Use of EST-SSR markers for genetic characterisation of commercial watermelon varieties and hybrid seed purity testing. Seed Sci. & Technol., 41, 245–256. https://doi.org/10.15258/sst.2013.41.2.07
  • Lombard, V., Dubreuil, P., Dillmann, C., Baril, C. (2001). Genetic distance estimators based on molecular data for plant registration and protection: a review. Acta Hort., 546, 55–63. https://doi.org/10.17660/ActaHortic.2001.546.2
  • Lu, X., Adedze, Y.M.N., Chofong, G.N., Gandeka, M., Deng, Z., Teng, L., & Li, W. (2018). Identification of high-efficiency SSR markers for assessing watermelon genetic purity. Journal of Genetics, 97(5), 1295–1306. https://doi.org/10.1007/s12041-018-1027-4
  • Morilipınar, E.O., Dalda-Sekerci, A., Coskun, O.F., & Gulsen, O. (2021). Genetic analysis of local pumpkin populations. International Journal of Agricultural and Natural Sciences, 14 (3), 264-272.
  • Nantoume, A.D., Andersen, S.B., & Jensen, B.D. (2013). Genetic differentiation of watermelon landrace types in Mali revealed by microsatellite (SSR) markers. Genetic Resources and Crop Evolution, 60(7), 2129–2141. https://doi.org/10.1007/s10722-013-9980-5
  • Navot, N., & Zamir, D. (1987). Isozyme and seed protein phylogeny of genus Citrullus (Cucurbitaceae). Plant Systematics and Evolution, 156, 61–67. https://doi.org/10.1007/s10722-013-9980-5
  • Powel, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., & Rafalski, A. (1996). The Comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2 (3), 225–238. https://doi.org/10.1007/BF00564200
  • Röder, M.S., Plaschke, J., König, S.U., Börner, A., Sorrells, M.E., Tanksley, S.D., & Ganal, M.W. (1995). Abundance, variability and chromosomal location of microsatellites in wheat. Molecular and General Genetics MGG, 246(3), 327–333. https://doi.org/10.1007/BF00288605
  • Sarı, N., Solmaz, I., Yetişir, & H., Ünlü, H. (2007). Watermelon genetic resources in Turkey and their characteristics. Acta Hortic., 731, 433–438.
  • Solmaz, I. (2010). Bazı karpuz genotiplerinin SSR ve SRAP markörleri ile karakterizasyonu ve fusarium solgunluğu (Fusarium oxysporum f. sp. niveum)’na dayanımlarının klasik ve moleküler yöntemlerle araştırılması. Doktora Tezi, ÇÜ Fen Bilimleri Enstitüsü, Adana.
  • Solmaz, I., Sarı, N., Aka-Kaçar, Y., & Yalçın-Mendi, N.Y. (2010). The genetic characterization of Turkish watermelon (Citrullus lanatus) accessions using RAPD markers. Genetic Resources and Crop Evolution, 57(5), 763–771. https://doi.org/10.1007/s10722-009-9515-2
  • Tlili, I., Hdider, C., Ilahy, R., & Jebari, H. (2010). Phytochemical composition and antioxidant activity of selected watermelon varieties grown in Tunisia. The African Journal of Plant Science and Biotechnology, 68–71.
  • Tzitzikas, E.M., Monforte, A.J., Fatihi, A., Kypriotakis, A., Iacovides, T.A., Ioannides, I.M., & Kalaitzis, P. (2009). Genetic diversity and population structure of traditional Greek and Cypriot melon134 cultigens (Cucumis melo L.) based on simple sequence repeat variability. Hort Science, 44 (7), 1820–1824. https://doi.org/10.21273/HORTSCI.44.7.1820
  • Uzun, A., Cil, A., Yaman, M., & Coskun, O.F. (2020). Genetic diversity and some fruit characteristics of quince genotypes collected from Kayseri region. Turkish Journal of Agriculture - Food Science and Technology, 8(2), 318–323. https://doi.org/10.24925/turjaf.v8i2.318-323.3012
  • Zhang, H., Wang, H., Guo, S., Ren, Y., Gong, G., Weng, Y., & Xu, Y. (2012). Identification and validation of a core set of microsatellite markers for genetic diversity analysis in watermelon, Citrullus lanatus Thunb. Matsum. & Nakai. Euphytica, 186(2), 329–342. https://doi.org/10.1007/s10681-011-0574-z