Kıvılcım Plazma Sinterleme Yöntemiyle Üretilen Mg-TiB2 Nanokompozitlerin Elektriksel, Isıl ve Mekanik Özellikleri

Monolitik magnezyum, nano-TiB2 partikülleri ile takviyelendirilerek Mg-TiB2 nanokompozitleri üretilmiş ve nano-TiB2 partiküllerinin Mg matrisli nanokompozitlerin elektriksel, ısıl ve mekanik özellikleri üzerindeki etkileri incelenmiştir. Monolitik Mg ve Mg-TiB2 nanokompozitler kıvılcım plazma sinterleme yöntemi ile üretilmiştir. Hem analitik hem de deneysel sonuçlar, Mg-TiB2 nanokompozitlerin elektriksel ve ısıl iletkenliklerinin monolitik Mg'den daha düşük olduğunu ve nano-TiB2 partiküllerinin miktarı arttıkça elektriksel ve ısıl iletkenliklerinin azaldığını ortaya koymuştur. Mg-TiB2 nanokompozitlerin deneysel olarak bulunan elektriksel ve ısıl iletkenliklerinin, daha yüksek nano-TiB2 partikül miktarlarında daha yüksek oranda düştüğü saptanmıştır. Belirli miktarda nano-TiB2 partikül içeren Mg-TiB2 nanokompozitlerin deneysel elektriksel ve ısıl iletkenlikleri, analitik hesaplamalar ile elde edilen sonuçlardan daha düşük değerlerde bulunmuştur. Mg-TiB2 nanokompozitlerin basma dayanımları monolitik Mg’den daha yüksek olmakla birlikte, nano-TiB2 partikül miktarı arttıkça basma dayanımı artmış, ancak yüksek miktarda nano-TiB2 partiküllerin kullanılması basma dayanımında azalmaya neden olmuştur. Monolitik Mg ile karşılaştırıldığında, ağırlıkça %1,5 nano-TiB2 partikül içeren Mg-TiB2 nanokompozitinin basma dayanımı %34 artış gösterirken, hasar gerinimi ise %12 azalmıştır.

Electrical, Thermal, and Mechanical Properties of Mg-TiB2 Nanocomposites Produced by Spark Plasma Sintering

Monolithic magnesium was reinforced with nano-TiB2 particles to produce Mg-TiB2 nanocomposites, and the effects of nano-TiB2 particles on the electrical, thermal, and mechanical properties of Mg matrix nanocomposites were studied. Monolithic Mg and Mg-TiB2 nanocomposites were manufactured using spark plasma sintering process. Both analytical and experimental findings revealed that the electrical and thermal conductivities of Mg-TiB2 nanocomposites were lower than those of monolithic Mg and decreased as the amount of nano-TiB2 particles increased. The electrical and thermal conductivities of Mg-TiB2 nanocomposites decreased at a higher rate for a higher weight fraction of nano-TiB2 particles. The experimental electrical and thermal conductivities of Mg-TiB2 nanocomposites at a certain amount of nano-TiB2 particles was measured at lower values than those obtained by analytical calculations. The compressive strength of Mg-TiB2 nanocomposites was higher than that of monolithic Mg and improved as the weight fraction of nano-TiB2 particles increased; however, a high amount of nano-TiB2 particles resulted in a decrease in compressive strength. The compressive strength of Mg-TiB2 nanocomposite with 1.5wt.% nano-TiB2 particles improved by 34%; on the other hand, its failure strain decreased by 12% compared to monolithic Mg.

___

  • Akbari, M.K., Shirvanimoghaddam, K., Hai, Z., Zhuiykov, S., Khayyam, H. (2017). Al-TiB2 micro/nanocomposites: Particle capture investigations, strengthening mechanisms and mathematical modelling of mechanical properties. Mater. Sci. Eng. A, 682, 98-106.
  • Malaki, M., Xu, W., Kasar, A.K., Menezes, P.L., Dieringa, H., Varma, R.S., Gupta, M. (2019). Advanced metal matrix nanocomposites. Metals, 9(3), 330, 1-39.
  • Ceschini, L., Dahle, A., Gupta, M., Jarfors, A.E.W., Jayalakshmi, S., Morri, A., Rotundo, F., Toschi, S., Singh, R.A. (2017). Aluminum and magnesium metal matrix nanocomposites. Springer Nature, Singapore, pp. 1-164.
  • Stalin, B., Ravichandran, M., Mohanavel, V., Raj, L.P. (2020). Investigations into microstructure and mechanical properties of Mg-5wt.%Cu-TiB2 composites produced via powder metallurgy route. J. Min. Metall. Sect. B: Metall., 56(1), 99-108.
  • Abbas, A., Rajagopal, V., Huang, S.J. (2021). Magnesium metal matrix composites and their applications. In: Magnesium alloys structure and properties, T.A. Tański, P. Jarka (eds.), IntechOpen, London, UK, 1-17.
  • Shu, S., Yang, H., Tong, C., Qiu, F. (2016). Fabrication of TiCx-TiB2/Al composites for application as a heat sink. Materials, 9(642), 1-10.
  • Rudajevová, A., Lukáč, P. (2000). Thermal conductivity of SiC reinforced magnesium matrix composites. In: Microstructural investigation and analysis, B. Jouffrey (ed.), Wiley‐VCH Verlag GmbH, Weinheim, Germany, pp. 179-183.
  • Dieringa, H. (2020). Production and properties of light metal matrix nanocomposites. Metals, 10(1), 95, 1-4.
  • Grasso, S., Sakka, Y., Maizza, G. (2009). Electric current activated/assisted sintering (ECAS): a review of patents 1906-2008. Sci. Technol. Advanced Materials, 10(5), 053001, 1-24.
  • Munir, Z. A., Tamburini, U. A., Ohyanagi, M. (2006). The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J. Mater. Sci., 41(3), 763-777.
  • Guillon, O., Gonzalez‐Julian, J., Dargatz, B., Kessel, T., Schierning, G., Räthel, J. (2014). Field‐assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv. Eng. Mater., 16(7), 830-849.
  • Sharma, N., Alam, S.N., Ray, B.C. (2019). Fundamentals of spark plasma sintering (SPS): An ideal processing technique for fabrication of metal matrix nanocomposites. In: Spark plasma sintering of materials: Advances in processing and applications, C. Pasquale (ed.), Springer International Publishing, Cham, Switzerland, 219, pp. 21-59.
  • Muhammad, W.N.A.W., Mutoh, Y., Miyashita, Y. (2010). Microstructure and mechanical properties of magnesium prepared by spark plasma sintering. Adv. Mat. Res., 129-131, 764-768.
  • Mondet, M, Barraud, E., Lemonnier, S., Guyon, J., Allain, N., Grosdidier, T. (2016). Microstructure and mechanical properties of AZ91 magnesium alloy developed by spark plasma sintering. Acta Mater., 119, 55-67.
  • Dey, A., Pandey, K.M., (2015). Magnesium metal matrix composites-A review, Rev. Adv. Mater. Sci., 42, 58-67.
  • Muhammad, W.N.A.W., Sajuri, Z., Mutoh, Y., Miyashita, Y., (2011). Microstructure and mechanical properties of magnesium composites prepared by spark plasma sintering technology. J. Alloy. Compd., 509, 6021-6029, 2011.
  • Garbiec, D., (2016). Study on microstructure and some mechanical properties of spark plasma sintered Mg-Al2O3 composites. The 5 International Lower Silesia-Saxony Conference: Advanced Metal Forming Processes in Automotive Industry, Wroclaw, Poland, 28-29 June.
  • Ghasali, E., Alizadeh, M., Niazmand, M., Ebadzadeh, T. (2017). Fabrication of magnesium-boron carbide metal matrix composite by powder metallurgy route: Comparison between microwave and spark plasma sintering. J. Alloy. Compd., 697, 200-207.
  • Zhang, H., Zhao, Y., Yan, Y., Fan, J., Wang, L., Dong, H., Xu, B. (2017). Microstructure evolution and mechanical properties of Mg matrix composites reinforced with Al and nano SiC particles using spark plasma sintering followed by hot extrusion. J. Alloy. Compd., 725, 652-664.
  • Dieringa, H. (2013). Applications: magnesium-based metal matrix composites (MMCs). In: Fundamentals of magnesium alloy metallurgy, M.O. Pekguleryuz, K.A. Kainer, A.A. Kaya (eds.), Woodhead Publishing, Cambridge, UK, pp. 317-341.
  • Xiao, P., Gao, Y., Yang, C., Liu, Z., Li, Y., Xu, F. (2018). Microstructure, mechanical properties and strengthening mechanisms of Mg matrix composites reinforced with in situ nanosized TiB2 particles, Mater. Sci. Eng. A., 710, 251-259.
  • Aydin, F., Sun, Y. (2018). Investigation of wear behaviour and microstructure of hot-pressed TiB2 particulate-reinforced magnesium matrix composites. Can. Metall. Q., 57(4), 455-469.
  • Jiang, Q.C., Wang, H.Y., Ma, B.X., Wang, Y., Zhao, F. (2004). Fabrication of TiB2 particulate reinforced magnesium matrix composites by powder metallurgy. Mater. Lett., 58(27-28), 3509-3513.
  • Leich, L., Röttger, A., Kuchenbecker, R., Theisen, W. (2020). Electro-discharge sintering of nanocrystalline NdFeB magnets: process parameters, microstructure, and the resulting magnetic properties. J. Mater. Sci.: Mater. Electron., 31, 20431-20443.
  • Balice, L., Cologna, M., Audubert, F., Hazemann, J. L. (2021). Densification mechanisms of UO2 consolidated by spark plasma sintering. J. Eur. Ceram. Soc., 41(1), 719-728.
  • Schmidt, R., Martin Scholze, H., Stolle, A. (2016). Temperature progression in a mixer ball mill. Int. J. Ind. Chem., 7, 181-186.
  • Calin, R., Pul, M., Pehlivanli, Z.O., (2012). The effect of reinforcement volume ratio on porosity and thermal conductivity in Al-MgO composites. Mater. Res., 15(6), 1057-1063.
  • Davis, L.C., Artz, B.E. (1995). Thermal conductivity of metal‐matrix composites. J. Appl. Phys., 77(10), 4954-4960.
  • Ast, D.G. (1974). Evidence for percolation-controlled conductivity in amorphous AsxTe1-x films. Phys. Rev. Lett., 33(17), 1042-1045.
  • Weber, L., Dorn, J., Mortensen, A. (2003). On the electrical conductivity of metal matrix composites containing high volume fractions of non-conducting inclusions. Acta Mater., 51, 3199-3211.
  • Beni, H.A., Alizadeh, M., Ghaffari, M., Amini, R. (2014). Investigation of grain refinement in Al/Al2O3/B4C nano-composite produced by ARB. Compos. B. Eng., 58, 438-442, 2014.
  • Miller, W.S., Humphreys, F.J. (1991). Strengthening mechanisms in particulate metal matrix composites. Scr. Mater., 25(1), 33-38.
  • Iqbal, A.K.M.A., Arai, Y., Araki, W. (2013). Effect of hybrid reinforcement on crack initiation and early propagation mechanisms in cast metal matrix composites during low cycle fatigue. Mater. Des., 45, 241-252.
  • Manohar, G., Pandey, K.M., Maity, S.R. (2021). Effect of sintering mechanisms on mechanical properties of AA7075/B4C composite fabricated by powder metallurgy techniques. Ceram. Int., 47(11), 15147-15154.
  • Senthilkumar, P., Manimaran, R., and Y.K., Reddy. (2021). Evaluation of mechanical properties of hybrid Al7009 nanocomposite. Energy Sources A: Recovery Util. Environ. Eff., 43(2), 216-224.
International Journal of Advances in Engineering and Pure Sciences-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2008
  • Yayıncı: Marmara Üniversitesi
Sayıdaki Diğer Makaleler

Gömülü Sistemler İçin Bilgisayar Tabanlı Grafiksel Kullanıcı Ara yüzü Tasarım Aracı Geliştirilmesi

Cihan YILDIRIM, Veysel BÖCEKÇİ

Ambalaj Atığı Toplama Sistemlerinin Karşılaştırmalı Sürdürülebilirlik Analizi

Eren YILDIZ GEYHAN, Gülşah YILAN, Gökçen ALTUN-ÇİFTÇİOĞLU, M. A. Neşet KADIRGAN

Kalkon Türevli Bileşiklerin Covid-19 Tedavisine Yönelik SARS-CoV-2 Main Protease Enzimine Karşı Bağlanma Mekanizmasının Moleküler Kenetlenme Yöntemi ile Aydınlatılması

Gizem TATAR, Bedriye Seda KURŞUN AKTAR

Kısa, Orta ve Uzun Vadeli Trafik Akış Hızı Tahmini ve Görselleştirilme Aracı

İbrahim TAKAK, Halit GÖRMEZ, H. İrem TÜRKMEN, M. Amaç GÜVENSAN

Rahim Ağzı Kanser Alt-Tiplerine Özgü Moleküler Hedef, Biyoişaretçi Adaylar ve Yeniden Konumlandırılan İlaçların Belirlenmesi

Beste TURANLI

Gördes Lateritinin CO Atmosferinde İzotermal Olmayan İndirgenme Kinetiği

Nesibe DİLMAÇ

Structural Modification of Ibuprofen as new NSAIDs via DFT, Molecular Docking and Pharmacokinetics Studies

Oluwatoba OYENEYİN, Nureni IPİNLOJU, Nathanael OJO, Daniel AKERELE

Kriptopara Dinamikleri: Bitcoin Cash, Ethereum, Litecoin ve Ripple

Cem Çağri DONMEZ, Doruk ŞEN, Umut HAZIR

High-Level Production of MMLV Reverse Transcriptase Enzyme in Escherichia Coli

Özlem KAPLAN, Rizvan İMAMOĞLU, İsa GÖKÇE

Türk Ulusal Bilim e-Altyapısı TRUBA’da Moleküler Dinamik Paketi GROMACS’in Performans Optimizasyonu

Büşra SAVAŞ, Ezgi KARACA