Effect of Doping Concentration and Excitation Power on Upconversion and Temperature Sensitivity of Gd3Ga5O12:Yb3+/Er3+ Phosphors

Yb/Er codoped Gd3Ga5O12 nanocrystalline upconverting phosphors were produced by the sol-gel pechini method at 1000 °C annealing temperature. The phosphor structure, morphological features, and luminescent properties of the fabricated material were studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), and photoluminescence measurements (PL). Upconversion luminescence characteristics were investigated in the range of 450-850 nm by a 975 nm laser source. Emission, optical, and theoretical thermal behaviors were analyzed with respect to Er3+ ion content and the increasing excitation power. Temperature sensitivity calculations based on the fluorescence intensity ratio were performed by employing the thermally-coupled levels of Er3+. The maximum sensitivity was calculated with the optimal value of 0.83x10-2 K-1 for Gd3Ga5O12:2%Yb3+,0.5%Er3+ nanophosphor. The results pointed out that Yb/Er codoped Gd3Ga5O12 may be a potential candidate for optical temperature sensors and lighting.

Effect of Doping Concentration and Excitation Power on Upconversion and Temperature Sensitivity of Gd3Ga5O12:Yb3+/Er3+ Phosphors

Yb/Er codoped Gd3Ga5O12 nanocrystalline upconverting phosphors were produced by the sol-gel pechini method at 1000 °C annealing temperature. The phosphor structure, morphological features, and luminescent properties of the fabricated material were studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), and photoluminescence measurements (PL). Upconversion luminescence characteristics were investigated in the range of 450-850 nm by a 975 nm laser source. Emission, optical, and theoretical thermal behaviors were analyzed with respect to Er3+ ion content and the increasing excitation power. Temperature sensitivity calculations based on the fluorescence intensity ratio were performed by employing the thermally-coupled levels of Er3+. The maximum sensitivity was calculated with the optimal value of 0.83x10-2 K-1 for Gd3Ga5O12:2%Yb3+,0.5%Er3+ nanophosphor. The results pointed out that Yb/Er codoped Gd3Ga5O12 may be a potential candidate for optical temperature sensors and lighting.

___

  • Referans1 Daldosso, M., Falcomer, D., Speghini, A., Bettinelli, M., Enzo, S., Lasio, B., & Polizzi, S. (2008). Synthesis, structural investigation and luminescence spectroscopy of nanocrystalline Gd3Ga5O12 doped with lanthanide ions. J. Alloys Compd., 451(1–2), 553–556.
  • Referans2 Venkatramu, V., León-Luis, S. F., Rodríguez-Mendoza, U. R., Monteseguro, V., Manjón, F. J., Lozano-Gorrín, A. D., Valiente, R., Navarro-Urrios, D., Jayasankar, C. K., Muñoz, A., & Lavín, V. (2012). Synthesis, structure and luminescence of Er 3+-doped Y3Ga5O12 nano-garnets. J. Mater. Chem., 22(27), 13788–13799.
  • Referans3 Singh, S. K., Lee, D. G., Yi, S. S., Jang, K., Shin, D. S., & Jeong, J. H. (2013). Probing dual mode emission of Eu3+ in garnet phosphor. J. Appl. Phys., 113(17).
  • Referans4 Wang, X., Li, X., Xu, S., Cheng, L., Sun, J., Zhang, J., Li, L., & Chen, B. (2019). A comparative study of spectral and temperature sensing properties of Er3+ mono-doped LnNbO4 (Ln = Lu, Y, Gd) phosphors under 980 and 1500 nm excitations. Mater. Res. Bull., 111, 177–182.
  • Referans5 Ranjan, S. K., Mondal, M., & Rai, V. K. (2018). Er3+-Yb3+/Er3+-Yb3+-Li+/Er3+-Yb3+-Zn2+:Gd2O3 nanophosphors for efficient frequency upconverter and temperature sensing applications. Mater. Res. Bull., 106, 66–73.
  • Referans6 Liu, X., Lei, R., Huang, F., Deng, D., Wang, H., Zhao, S., & Xu, S. (2019). Dependence of upconversion emission and optical temperature sensing behavior on excitation power in Er3+/Yb3+ co-doped BaMoO4 phosphors. J. Lumin., 210, 119–127.
  • Referans7 Du, P., Luo, L., & Yu, J. S. (2015). Infrared-to-visible upconversion emission of Er3+/Yb3+-codoped SrMoO4 phosphors as wide-range temperature sensor. Curr. Appl. Phys, 15(12), 1576–1579.
  • Referans8 Lu, H., Hao, H., Gao, Y., Shi, G., Fan, Q., Song, Y., Wang, Y., & Zhang, X. (2017). Dual functions of Er3+/Yb3+ codoped Gd2(MoO4)3 phosphor: temperature sensor and optical heater. J. Lumin., 191, 13–17.
  • Referans9 Ćirić, A., Stojadinović, S., & Dramićanin, M. D. (2020). Luminescence temperature sensing using thin-films of undoped Gd2O3 and doped with Ho3+, Eu3+ and Er3+ prepared by plasma electrolytic oxidation. Ceram. Int., 46(14), 23223–23231.
  • Referans10 Vetrone, F., Naccache, R., Zamarrón, A., De La Fuente, A. J., Sanz-Rodríguez, F., Maestro, L. M., Rodriguez, E. M., Jaque, D., Sole, J. G., & Capobianco, J. A. (2010). Temperature sensing using fluorescent nanothermometers. ACS Nano., 4(6), 3254–3258.
  • Referans11 Marciniak, L., & Trejgis, K. (2018). Luminescence lifetime thermometry with Mn3+-Mn4+ co-doped nanocrystals. J. Mater. Chem. C., 6(26), 7092–7100.
  • Referans12 Wade, S.A., Collins, S.F., Baxter, G.W. (2003) Fluorescence intensity ratio technique for optical fiber point temperature sensing, J. Appl. Phys,. 94, 4743–4756.
  • Referans13 Wang, X., Liu, Q., Bu, Y., Liu, C.S., Liu, T., Yan, X. (2015) Optical temperature sensing of rare-earth ion doped phosphors, RSC Adv., 5, 86219–86236.
  • Referans14 Pang, M., & Lin, J. (2005). Growth and optical properties of nanocrystalline Gd3Ga5O12: Ln (Ln = Eu3+, Tb3+, Er 3+) powders and thin films via Pechini sol-gel process. J. Cryst. Growth., 284(1–2), 262–269.
  • Referans15 Li, Y., Lu, H., Zhang, Y., Ma, J., & Song, G. (2012). Synthesis and luminescence properties of nanocrystalline Gd3Ga5O12:Eu3+ by a homogeneous precipitation method. Rare Met., 31(6), 599–603.
  • Referans16 Erdem, M., Örücü, H., Cantürk, S. B., & Eryürek, G. (2021). Upconversion Yb3+/Er3+:Gadolinium Gallium Garnet Nanocrystals for White-Light Emission and Optical Thermometry. ACS Appl. Nano Mater., 4(7), 7162–7171.
  • Referans17 Kniec, K., Ledwa, K., MacIejewska, K., & Marciniak, L. (2020). Intentional modification of the optical spectral response and relative sensitivity of luminescent thermometers based on Fe3+,Cr3+,Nd3+co-doped garnet nanocrystals by crystal field strength optimization. Mater. Chem. Front., 4(6), 1697–1705.
  • Referans18 Piao, R. Q., Xu, Q., Zhang, Z. B., Wang, Y., Pun, E. Y. B., & Zhang, D. L. (2018). A study on ratiometric thermometry based on upconversion emissions of erbium ions in gadolinium gallium garnet single-crystal. J. Lumin., 204, 116–121.
  • Referans19 Zhang, K., Tong, L., Ma, Y., Wang, J., Xia, Z., & Han, Y. (2019). Modulated up-conversion luminescence and low-temperature sensing of Gd3Ga5O12:Yb3+/Er3+ by incorporation of Fe3+ ions. J. Alloys Compd., 781, 467–472.
  • Referans20 Sun, H. X., Yuan, N., Zhang, Z. B., Sun, Q., Wang, Y., Wong, W. H., Tu, C. Y., Yu, D. Y., Pun, E. Y. B., & Zhang, D. L. (2017). Temperature characteristics of the green up-conversion fluorescence of Er3+-doped Gd3Ga5O12 single crystal for temperature sensing. Sci. Adv. Mater., 9(5), 727–732.
  • Referans21 Garino, T. J., Voigt, J. A., Spoerke, E. D., Moore, D. L., Lockwood, S. J., Gibson, J. T., & Phifer, C. C. (2007). Development of a Manufacturing Capability for Production of Ceramic Laser Materials. No. SAND2007-7393. Sandia National Laboratoires Report
  • Referans22 Örücü, H. (2022). The effect of molar ratio and annealing on crystal structure of gadolinium-gallium garnet nanopowders synthesized by sol-gel method. J. Ceram. Process. Res., 23(6), 799–805.
  • Referans23 Pielaszek, R. (2004). FW 1/5/4/5 M method for determination of the grain size distribution from powder diffraction line profile. J. Alloys Compd., 382(1–2), 128–132.
  • Referans24 Guo, Y., Wang, D., Zhao, X., & Wang, F. (2016). Fabrication, microstructure and upconversion luminescence of Yb3+/Ln3+ (Ln = Ho, Er, Tm) co-doped Y2Ti2O7 ceramics. Mater. Res. Bull., 73, 84–89.
  • Referans25 Santana-Alonso, A., Méndez-Ramos, J., Yanes, A. C., Del-Castillo, J., & Rodríguez, V. D. (2010). White light up-conversion in transparent sol-gel derived glass-ceramics containing Yb3+-Er3+-Tm3+ triply-doped YF3 nanocrystals. Mater. Chem. Phys., 124(1), 699–703.
  • Referans26 Wang, X., Wang, Y., Jin, L., Bu, Y., Yang, X. L., & Yan, X. (2019). Controlling optical temperature detection of Ca3Al2O6: Yb3+,Er3+ phosphors through doping. J. Alloys Compd., 773, 393–400.
  • Referans27 Liao, J., Wang, Q., Kong, L., Ming, Z., Wang, Y., Li, Y., & Che, L. (2018). Effect of Yb3+ concentration on tunable upconversion luminescence and optically temperature sensing behavior in Gd2TiO5:Yb3+/Er3+phosphors. Opt. Mater., 75, 841–849.
  • Referans28 Cheng, X., Dong, X., Peng, K., Zhang, H., Su, Y., & Jiang, L. (2020). Upconversion Luminescence and Optical Temperature-Sensing Properties of LaNbO4:Yb3+/Er3+ Phosphors. , J. Electron. Mater., 49(1), 518–523. Referans29 Lin, M., Xie, L., Wang, Z., Richards, B. S., Gao, G., & Zhong, J. (2019). Facile synthesis of mono-disperse sub-20 nm NaY(WO4)2:Er3+,Yb3+ upconversion nanoparticles: A new choice for nanothermometry. J. Mater. Chem. C., 7(10), 2971–2977.
  • Referans30 Gao, P., Li, X., Gong, Y., Shen, G., Zhang, S., & Guan, L. (2019). Highly sensitive up-conversion phosphor for optical thermometry: CaLaAl3O7:Er3+/Yb3+. J. Rare Earths., 37(9), 937–942.
  • Referans31 Du, P., Luo, L., & Yu, J. S. (2016). Facile synthesis of Er3+/Yb3+-codoped NaYF4 nanoparticles: A promising multifunctional upconverting luminescent material for versatile applications. RSC Adv., 6(97), 94539–94546.
  • Referans32 Liu, H., Jian, X., Liu, M., Wang, K., Bai, G., & Zhang, Y. (2021). Investigation on the upconversion luminescence and ratiometric thermal sensing of SrWO4:Yb3+/RE3+(RE = Ho/Er) phosphors. RSC Adv., 11(58), 36689–36697.
  • Referans33 Pollnau, M., Gamelin, D., Lüthi, S., Güdel, H., & Hehlen, M. (2000). Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B - Condens. Matter Mater. Phys., 61(5), 3337–3346.
  • Referans34 Liu, X., Chen, Y., Shang, F., Chen, G., & Xu, J. (2019). Wide-range thermometry and up-conversion luminescence of Ca5(PO4 )3 F:Yb 3+ /Er 3+ transparent glass ceramics. J. Mater. Sci. Mater. Electron., 30(6), 5718–5725.
  • Referans35 Fischer, L. H., Harms, G. S., & Wolfbeis, O. S. (2011). Upconverting nanoparticles for nanoscale thermometry. Angew. Chemie - Int. Ed., 50(20), 4546–4551.
International Journal of Advances in Engineering and Pure Sciences-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2008
  • Yayıncı: Marmara Üniversitesi
Sayıdaki Diğer Makaleler

Yeni Bir Güç/Soğutma Çevriminin Enerji ve Ekserji Analizi: Kalina Çevrimi ve Ejectörlü Soğutma Çevrimi

Candeniz SEÇKİN

Cryptococcus diffluens D44 tarafından üretilen lipaz(lar)ın saflaştırılması ve karakterizasyonuna ait ön çalışma

Esra BÜYÜK, Orkun PİNAR

Uzaktan Eğitim Sistemi ile Gerçekleştirilen İş Sağlığı ve Güvenliği Eğitimlerinin Çalışan Memnuniyetine Etkisinin İncelenmesi

Orkun DALYAN, Hatice DALYAN, Ömer Faruk ÖZTÜRK, Mehmet PİŞKİN

Otomatik Depolama Vincinin Titreşiminin İleri Besleme Kuvveti ile Kontrolü ve Endüstriyel Alanda Uygulanması

İ. Sina KUSEYRİ

Poliglisidol Esaslı Çok Dallanmış Üretan Metakrilat/POSS/Gümüş Nanopartikül İçeren Nanokompozitlerin Hazırlanması ve Karakterizasyonu

Gülay BAYRAMOĞLU

rGO'nun P. Chrysosporium'un Mikrobiyal Aktivitesi Üzerindeki Etkisinin İncelenmesiyle Grafen Bazlı Malzemelerin Potansiyel Çevresel Risklerinin Değerlendirilmesi.

Özgecan MADENLİ, Ece Ümmü DEVECİ

Yetenek Yönetimi Uygulamalarının Örgüt Performansı İle İlişkisinde Kurumsal Girişimciliğin Aracılık Etkisi

Zülal ÖZTÜRK KAYA, Gaye KARAÇAY, Selim ZAİM, Lütfihak ALPKAN

Türkiye Madencilik Sektörü İş Kazalarının Analizi ve Gelecek Perspektifleri

Mustafa SEKMEN, Mehmet Ali ZENGİN

QGIS ile Hidrolojik Model Oluşturma ve Meteorolojik Verilerin Zaman Periyotlarına Göre Değişimi: Kahramanmaraş Örneği

Burcu ERCAN, Mehmet UNSAL

Mezankimal Kök Hücre Enkapsülasyonu için 3B Baskı ile Makro Kapsül Üretimi

Mehmet Ali KARACA, Derya DİLEK KANÇAĞI, Uğur ÖZBEK, Ercüment OVALI, Ozgul GOK