Anti-invariant ξ^⊥-Riemannian Submersions From Almost Hyperbolic Contact Manifolds
In this paper, we introduce anti-invariant ξ^⊥-Riemannian submersions from almost hyperbolic
___
- [1] Akyol M. A., Conformal anti-invariant submersions from cosymplectic manifolds. Hacet. J. Math. Stat. 46(2) (2017), 177-192.
- [2] Cengizhan M. and Erken I.K., Anti-invariant Riemannian submersions from cosymplectic manifolds onto Riemannian submersions.
Filomat 29(7) (2015), 1429-1444.
- [3] Chinea, C., Almost contact metric submersions. Rend. Circ. Mat. Palermo 43(1) (1985), 89-104.
- [4] Eells, J. and Sampson, J. H., Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86 (1964), 109-160.
- [5] Falcitelli, M., Ianus, S. and Pastore, A. M., Riemannian submersions and Related topics, World Scientific, River Edge, NJ, 2004.
- [6] Gündüzalp, Y., Anti-invariant semi-Riemannian submersions from almost para Hermitian manifolds. Journal of Function Spaces and
Applications 2013, Art. ID 720623, 7 pp.
- [7] Gray, A., Pseudo-Riemannian almost product manifolds and submersion. J. Math. Mech. 16 (1967), 715-737.
- [8] Ianus, S. and Pastore, A. M., Harmonic maps on contact metric manifolds. Ann. Math. Blaise Pascal 2(2) (1995), 43-53.
- [9] Lee, J. W., Anti-invariant ?? Riemannian submersions from almost contact manifolds. Hacettepe J. Math. Stat. 42(2)(2013), 231-241.
[10] O’Neill, B., The fundamental equations of a submersions. Mich. Math. J. 13 (1996), 458-469.
- [11] Park, K.S., H-anti-invariant submersions from almost quaternionic Hermitian manifolds. Czechoslovak Math. J. 67(2) (2017), 557-578.
- [12] Siddiqi, M. D., Ahmed, M and Ojha, J.P., CR-submanifolds of nearly-trans hyperbolic sasakian manifolds admitting semi-symmetric
non-metric connection. African J. Diaspora 17(10) (2014), 93-105.
- [13] Siddiqi, M. D. and Akyol, M. A., Anti-invariant ξ^⊥-Riemannian Submersions from hyperbolic -Kenmotsu Manifolds. CUBO A
Mathematical Journal 20(1) (2018), 79-94.
- [14] Sahin, B., Anti-invariant Riemannian submersions from almost hermition manifolds. Cent. Eur. J. Math. 8(3) (2010), 437-447.
- [15] Şahin B., Riemannian submersions from almost Hermitian manifolds. Taiwanese J. Math. 17 (2012), 629-659.
- [16] Şahin B., Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and Their Applications. San Diego, CA, USA: Academic
Press, 2017.
- [17] Taştan, H. M. and Gerdan, S., Clairaut Anti-invariant Submersions from Sasakian and Kenmotsu Manifolds. Mediterranean J. Math. 14
(2017), no. 6, Art. 235, 17 pp.
- [18] Upadhyay, M. D. and Dube., K. K., Almost contact hyperbolic (f, g, η, ξ) structure. Acta. Math. Acad. Scient. Hung 28 (1976), 1-4.
- [19] Watson, B. Almost Hermitian submersions. J. Differential Geometry 11(1) (1976), 147-165.