Bibtex | @ { ieja266403, journal = {International Electronic Journal of Algebra}, issn = {1306-6048}, eissn = {1306-6048}, address = {1710 Sokak, No:41, Batikent/Ankara}, publisher = {Abdullah HARMANCI}, year = {2007}, volume = {2}, number = {2}, pages = {114 - 126}, title = {WEAKLY REGULAR SEMINEARRINGS}, key = {cite}, author = {Shabir, M. and Ahmed, İ.} } |
APA | Shabir, M. & Ahmed, İ. (2007). WEAKLY REGULAR SEMINEARRINGS . International Electronic Journal of Algebra , 2 (2) , 114-126 . |
MLA | Shabir, M. , Ahmed, İ. "WEAKLY REGULAR SEMINEARRINGS" . International Electronic Journal of Algebra 2 (2007 ): 114-126 < |
Chicago | Shabir, M. , Ahmed, İ. "WEAKLY REGULAR SEMINEARRINGS". International Electronic Journal of Algebra 2 (2007 ): 114-126 |
RIS | TY - JOUR T1 - WEAKLY REGULAR SEMINEARRINGS AU - M.Shabir, İ.Ahmed Y1 - 2007 PY - 2007 N1 - DO - T2 - International Electronic Journal of Algebra JF - Journal JO - JOR SP - 114 EP - 126 VL - 2 IS - 2 SN - 1306-6048-1306-6048 M3 - UR - Y2 - 2022 ER - |
EndNote | %0 International Electronic Journal of Algebra WEAKLY REGULAR SEMINEARRINGS %A M. Shabir , İ. Ahmed %T WEAKLY REGULAR SEMINEARRINGS %D 2007 %J International Electronic Journal of Algebra %P 1306-6048-1306-6048 %V 2 %N 2 %R %U |
ISNAD | Shabir, M. , Ahmed, İ. . "WEAKLY REGULAR SEMINEARRINGS". International Electronic Journal of Algebra 2 / 2 (Aralık 2007): 114-126 . |
AMA | Shabir M. , Ahmed İ. WEAKLY REGULAR SEMINEARRINGS. IEJA. 2007; 2(2): 114-126. |
Vancouver | Shabir M. , Ahmed İ. WEAKLY REGULAR SEMINEARRINGS. International Electronic Journal of Algebra. 2007; 2(2): 114-126. |
IEEE | M. Shabir ve İ. Ahmed , "WEAKLY REGULAR SEMINEARRINGS", , c. 2, sayı. 2, ss. 114-126, Ara. 2007 |
c-INJECTIVE ENVELOPE OF MODULES OVER A DEDEKIND DOMAIN
GALOIS MODULE STRUCTURE OF FIELD EXTENSIONS
D-NICE SYMMETRIC POLYNOMIALS WITH FOUR ROOTS OVER INTEGRAL DOMAINS D OF ANY CHARACTERISTIC
MODULES SATISFYING THE ASCENDING CHAIN CONDITION ON SUBMODULES WITH A BOUNDED NUMBER OF GENERATORS
A NOTE ON GROUP INVARIANT INCIDENCE FUNCTIONS
TOTALLY COFINITELY SUPPLEMENTED MODULES
DIVISION ALGEBRAS THAT RAMIFY ONLY ON THE ZEROS OF AN ELEMENTARY SYMMETRIC POLYNOMIAL
EXTENSIONS OF GM-RINGS OVER GENERALIZED POWER SERIES RINGS
SUBGROUP LATTICE ALGORITHMS RELATED TO EXTENDING AND LIFTING ABELIAN GROUPS