Graded S-Noetherian Modules

Graded S-Noetherian Modules

Let $G$ be an abelian group and $S$ a given multiplicatively closed subset of a commutative $G$-graded ring $A$ consisting of homogeneous elements. In this paper, we introduce and study $G$-graded $S$-Noetherian modules which are a generalization of $S$-Noetherian modules. We characterize $G$-graded $S$-Noetherian modules in terms of $S$-Noetherian modules. For instance, a $G$-graded $A$-module $M$ is $G$-graded $S$-Noetherian if and only if $M$ is $S$-Noetherian, provided $G$ is finitely generated and $S$ is countable. Also, we generalize some results on $G$-graded Noetherian rings and modules to $G$-graded $S$-Noetherian rings and modules.

___

  • D. D. Anderson and T. Dumitrescu, $S$-Noetherian rings, Comm. Algebra, 30(9) (2002), 4407-4416.
  • A. U. Ansari and B. K. Sharma, $G$-graded $S$-Artinian modules and graded $S$-secondary representations, Palest. J. Math., 11(3) (2022), 175-193.
  • J. Baeck, G. Lee and J. W. Lim, $S$-Noetherian rings and their extensions, Taiwanese J. Math., 20 (2016), 1231-1250.
  • Z. Bilgin, M. L. Reyes and Ü. Tekir, On right $S$-Noetherian rings and $S$-Noetherian modules, Comm. Algebra, 46(2) (2018), 863-869.
  • S. Goto and K. Yamagishi, Finite generation of Noetherian graded rings, Proc. Amer. Math. Soc., 89 (1983), 41-44.
  • A. Hamed and H. Sana, Modules satisfying the $S$-Noetherian property and $S$-ACCR, Comm. Algebra, 44(5) (2016), 1941-1951.
  • A. Hamed, $S$-Noetherian spectrum condition, Comm. Algebra, 46(8) (2018), 3314-3321.
  • R. Hazrat, Graded Rings and Graded Grothendieck Groups, London Math. Soc. Lecture Notes Series, v. 435, Cambridge University Press, Cambridge, 2016.
  • B. P. Johnson, Commutative Rings Graded by Abelian Groups, PhD Thesis. The University of Nebraska-Lincoln, 2012.
  • D. K. Kim and J. W. Lim, When are graded rings graded S-Noetherian rings, Mathematics, 8(9) (2020), 1532 (11pp).
  • D. K. Kim and J. W. Lim, The Cohen type theorem and the Eakin-Nagata type theorem for $S$-Noetherian rings revisited, Rocky Mountain J. Math., 50 (2020), 619-630.
  • M. J. Kwon and J. W. Lim, On nonnil-S-Noetherian rings, Mathematics, 8(9) (2020), 1428 (14pp).
  • . W. Lim, A note on $S$-Noetherian domains, Kyungpook Math. J., 55 (2015), 507-€“514.
  • J. W. Lim and D. Y. Oh, $S$-Noetherian properties on amalgamated algebras along an ideal, J. Pure Appl. Algebra, 218 (2014), 1075-1080.
  • J. W. Lim and D. Y. Oh, $S$-Noetherian properties of composite ring extensions, Comm. Algebra, 43 (2015), 2820-2829.
  • J. W. Lim and D. Y. Oh, Chain conditions on composite Hurwitz series rings, Open Math., 15 (2017), 1161-1170.
  • C. N\v{a}st\v{a}sescu and F. Van Oystaeyen, Graded Ring Theory, North-Holland Mathematical Library, 28, North-Holland Publishing Co., Amsterdam-New York, 1982. C. N\v{a}st\v{a}sescu and F. Van Oystaeyen, Graded rings with finiteness conditions II, Comm. Algebra, 13(3) (1985), 605-618.
  • C. N\v{a}st\v{a}sescu and F. Van Oystaeyen, Methods of Graded Rings, Lecture Notes in Math., 1836, Springer-Verlag, Berlin, 2004.
  • E. Noether, Idealtheorie in ringbereichen, Math. Ann., 83 (1921), 24-66.
  • M. Özen, O. A. Nazi, Ü. Tekir and K. P. Shum, Characterization theorems of $S$-Artinian modules, C. R. Acad. Bulgare Sci., 74(4) (2021), 496-505.
  • E. S. Sevim, Ü. Tekir and S. Koç, $S$-Artinian rings and finitely $S$-cogenerated rings, J. Algebra Appl., 19(3) (2020), 2050051 (16 pp).