ANALOGUES OF THE FRATTINI SUBALGEBRA

For a Lie algebra, L, the Frattini subalgebra F(L) is the intersection of all maximal subalgebras of L. We develop two analogues of the Frattini subalgebra, namely nF rat(L) and R(L). Specifically, we develop properties involving non-generators, containment relations, and nilpotency.

___

  • R. Amayo and I. Stewart, Infinite-Dimensional Lie Algebras, Noordoff Inter- national Pub., 1974.
  • D. W. Barnes, On the Cohomology of soluble Lie algebras, Math. Z., 101 (1967), 349.
  • D. W. Barnes, The Frattini argument for Lie algebras, Math. Z., 133 (1973), 283.
  • D. W. Barnes and H. M. Gastineau-Hills, On the theory of soluble Lie algebras, Math. Z., 106 (1968), 343-354.
  • J. Beidleman and T. Seo, Generalized Frattini subgroups of finite groups. Pacific J. Math., 23 (1967), 441-450.
  • A. Elduque, A Frattini theory for Malcev algebras, Algebras Groups Geom., 1 (1984), 247-266.
  • A. Elduque, On the Frattini sublagebra of a Lie admissable algebra, Alg. Gr. and Geom., 1 (1984), 267-276.
  • A. El Malek, On the Frattini subalgebra of a Malcev algebra, Arch. Math., 37 (1981), 306-315.
  • N. Jacobson, Lie Algebras, Interscience Publishers, John Wiley & Sons, New York, 1962.
  • N. Kamiya, The Frattini subalgebra of infinite-dimensional Lie algebras, Com- ment. Math. Univ. St. Paul., 24 (2) (1975/76), 113-117.
  • L. C. Kappe and J. Kirtland, Some analogues of the Frattini subgroup, Algebra Coll., 4 (1997), 419-426
  • J. Laliene, The Frattini subalgebra of a Bernstein algebra, Proc. Edin. Math. Soc., 35 (1992) 397-403.
  • E. Marshall, The Frattini subalgebra of a Lie algebra, J. Lond. Math. Soc., 42 (1967) 416-422.
  • W. R Scott, Group Theory. Prentice-Hall, New Jersey, 1964.
  • K. Stagg and E. Stitzinger, Minimal non-elementary Lie algebras, Proc. Amer. Math. Soc., to appear. I. Stewart, Lie Algebras Generated by Finite-dimensional Ideals, Research Notes in Mathematics, Pitman Publishing, San Francisco, 1975.
  • E.L. Stitzinger, A Nonimbedding theorem for associative algebras, Pacific J. Math., 30 (1969) 529-531.
  • E.L. Stitzinger, Frattini subalgebra of a class of solvable Lie algebras, Pacific J. Math., 34 (1970), 177-182.
  • E.L. Stitzinger, On the Frattini subalgebra of a Lie algebra, J. London Math. Soc., 2(2) (1970), 429-438.
  • E.L. Stitzinger, Supersolvable Malcev algebras, J. Algebra, 103 (1986) 69-79.
  • D. Towers, Elementary Lie algebras, J. London Math. Soc., 7(3) (1973), 295
  • D. Towers, A Frattini theory for algebras, J. London Math. Soc., 27(3) (1973), 462.
  • D. Towers, Two ideals of an algebra closely related to its Frattini ideal, Arch. Math., 35 (1980), 112-120.
  • D. Towers and V. Varea, Elementary Lie algebras and A-Lie algebras, J. Al- gebra, 312 (2007), 891-901.
  • M. Williams, Nilpotent n-Lie algebras, Comm. Algebra, 37 (2009), 1843-1849.
  • M. Williams, Frattini theory for n-Lie algebras, Algebra Discrete Math., 2 (2009) 108-115. Kristen Stagg
  • Department of Mathematics North Carolina State University Raleigh, NC USA e-mail: klstagg@ncsu.edu