Block Decomposition For Modules

Block decomposition for rings has been introduced andshown to be unique in the literature (see [T. Y. Lam, GraduateTexts in Mathematics, 131, Springer-Verlag, New York, 1991]).Applying annihilator submodules, we extend this definition tomodules and show that every  module $M$ has a unique blockdecomposition $M=\bigoplus_{i=1}^nM_i$ where each $M_i$ is anannihilator submodule.  We also show that the block decompositionfor any ring $R$ and the block decomposition for the module $R_R$, are identical. Block decomposition provides us with a decomposition for $\edmp{M}$ because $\edmp{M}\iso\prod_{i=1}^n\edmp{M_i}$. 

___

  • J. A. Beachy and W. D. Blair, Rings whose faithful left ideals are cofaithful, Pacific J. Math., 58(1) (1975), 1-13.
  • K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommuta- tive Noetherian Rings, Second Edition, London Mathematical Society Student Texts, 61, Cambridge University Press, Cambridge, 2004.
  • H. Khabazian, Existence and uniqueness of a certain type of subdirect product, to appear in Casp. J. Math. Sci.
  • T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991.