FOR WHICH PUISEUX MONOIDS ARE THEIR MONOID RINGS OVER FIELDS AP?

We characterize the Puiseux monoids $M$ for which the irreducible and the prime elements in the monoid ring $F[X;M]$, where $F$ is a field, coincide. We present a diagram of implications between some types of Puiseux monoids, with a precise position of the monoids $M$ with this property.

___

  • D. F. Anderson, Robert Gilmer's work on semigroup rings, in \Multiplicative Ideal Theory In Commutative Algebra, A tribute to the work of Robert Gilmer" (J. Brewer et al. (Eds)), Springer Science+Business media, LLC, (2006), 21-37.
  • D. D. Anderson, D. F. Anderson and M. Zafrullah, Factorization in integral domains, J. Pure Appl. Algebra, 69(1) (1990), 1-19.
  • K. E. Aubert, Theory of x-ideals, Acta Math., 107 (1962), 1-52.
  • S. T. Chapman, F. Gotti and M. Gotti, Factorization invariants of Puiseux monoids generated by geometric sequences, to appear in Comm. Algebra, DOI: 10.1080/00927872.2019.1646269; also arXiv1904.00219.
  • K. Christensen, R. Gipson and H. Kulosman, Irreducibility of certain binomials in semigroup rings for nonnegative rational monoids, Int. Electron. J. Algebra, 24 (2018), 50-61.
  • K. Christensen, R. Gipson and H. Kulosman, A new characterization of principal ideal domains, arXiv 1805.10374v1 [math.AC].
  • P. M. Cohn, Bezout rings and their subrings, Proc. Cambridge Philos. Soc., 64 (1968), 251-264.
  • P. M. Cohn, Algebra, Vol. I, Second Edition, John Wiley & Sons Sons, Ltd., Chichester, 1982.
  • J. Coykendall and F. Gotti, On the atomicity of monoid algebras, J. Algebra, 539 (2019), 138-151.
  • J. Coykendall and B. Johnson Mammenga, An embedding theorem, J. Algebra, 325 (2011), 177-185.
  • J. Coykendall and M. Zafrullah, AP-domains and unique factorization, J. Pure Appl. Algebra, 189 (2004), 27-35.
  • R. C. Daileda, A non-UFD integral domains in which irreducibles are prime, preprint, http://ramanujan.math.trinity.edu/daileda/teach/m4363s07/nonufd. pdf.
  • L. Fuchs, In nite Abelian Groups, Vol. II, Pure and Applied Mathematics, Vol. 36-II, Academic Press, New York-London, 1973.
  • A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations, Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, 278, Chapman & Hall/CRC, Boca Raton, FL, 2006.
  • A. Geroldinger and W. Hassler, Local tameness of v-noetherian monoids, J. Pure Appl. Algebra, 212(6) (2008), 1509-1524.
  • A. Geroldinger and W. Hassler, Arithmetic of Mori domains and monoids, J. Algebra, 319(8) (2008), 3419-3463.
  • A. Geroldinger and A. Reinhart, The monotone catenary degree of monoids of ideals, Internat. J. Algebra Comput., 29(3) (2019), 419-457.
  • R. Gilmer, Multiplicative Ideal Theory, Pure and Applied Mathematics, No. 12, Marcel Dekker, Inc., New York, 1972.
  • R. Gilmer, Commutative Semigroup Rings, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1984.
  • R. Gilmer and T. Parker, Divisibility properties in semigroup rings, Michigan Math. J., 21 (1974), 6586.
  • R. Gilmer and T. Parker, Semigroup rings as Prufer rings, Duke Math. J., 41 (1974), 219-230.
  • R. Gipson and H. Kulosman, Atomic and AP semigroup rings F[X;M], where M is a submonoid of the additive monoid of nonnegative rational numbers, Int. Electron. J. Algebra, 22 (2017), 133-146.
  • F. Gotti, On the atomic structure of Puiseux monoids, J. Algebra Appl., 16(7) (2017), 1750126 (20 pp).
  • F. Gotti, Puiseux monoids and transfer homomorphisms, J. Algebra, 516 (2018), 95-114.
  • M. Gotti, On the local k-elasticities of Puiseux monoids, Internat. J. Algebra Comput., 29(1) (2019), 147-158.
  • F. Gotti and C. O'Neill, The elasticity of Puiseux monoids, to appear in J. Commut. Algebra, https://projecteuclid.org/euclid.jca/1523433696; also arXiv 1703.04207v1 [math.AC].
  • A. Grams, Atomic rings and the ascending chain condition for principal ideals, Proc. Cambridge Philos. Soc., 75 (1974), 321-329.
  • P. A. Grillet, Commutative Semigroups, Advances in Mathematics (Dordrecht), 2, Kluwer Academic Publishers, Dordrecht, 2001.
  • F. Halter-Koch, Ideal Systems, An Introduction to Multiplicative Ideal Theory, Monographs and Textbooks in Pure and Applied Mathematics, 211, Marcel Dekker, Inc., New York, 1998.
  • H. C. Hutchins, Examples of Commutative Rings, Polygonal Publ. House, Washington, N. J., 1981.
  • P. Jaffard, Les Systems des Ideaux, Dunod, 1960.
  • I. Kaplansky, Commutative Rings, Revised Edition, The University of Chicago Press, Chicago and London, 1974.
  • H. Kulosman, A new simple example of an atomic domain which is not ACCP, Adv. Algebra, 12 (2019), 1-7.
  • R. Matsuda, Torsion-free abelian group rings III, Bull. Fac. Sci., Ibaraki Univ. Ser. A, 9 (1977), 1-49.
  • D. G. Northcott, Lessons on Rings, Modules and Multiplicities, Cambridge University Press, Cambridge, 1968.
  • M. Zafrullah, On a property of pre-Schreier domains, Comm. Algebra, 15(9) (1987), 1895-1920.