Yüzeyi Kimyasal Buhar Biriktirme Yöntemiyle Grafen Kaplanmış Gümüş Yüzeyin Yansıtma ve Islatılabilme Özelliklerinin İncelenmesi

Malzemelerin yüzey özelliklerinin korunmasında grafen kritik bir nanomalzeme vazifesi görmektedir. Özellikle kimyasal olarak reaktif davranan metal yüzeylerin korozyon dirençlerinin artırılması endüstriyel uygulamalarda önem arz etmektedir. Yapılan çalışmalar pürüzsüz bir atomik yapıya sahip, kimyasal olarak inert, mekanik ve termal kararlılığa sahip olan grafen filmlerin üstün bir korozyon ve oksidasyon bariyeri görevi gördüğünü ispatlamıştır. Gümüş metali, yüksek elektrik ve ısı iletkenliği ile beraber bütün metaller içerisinde en yüksek yansıtma kabiliyeti başta olmak üzere, yüzey plazmon rezonansı gibi birçok üstün optik özelliklere sahip olan bir metaldir. Atmosfer ortamında gümüş her ne kadar oksitlenmese de havada bulunan kükürt içerikli gazlar sebebiyle gümüş yüzeyinde gümüş sülfür (Ag2S) tabakası oluşur ve kararmalar meydana gelir. Oluşan bu tabaka elektriksel, optik ve ıslatılabilirlik gibi yüzey özelliklerini olumsuz etkiler. Bu çalışmada optik ve elektronik uygulamalarda yaygın olarak kullanılan gümüş yüzeylerin kimyasal buhar biriktirme yöntemiyle sentezlenmiş grafen ile kaplanmasının yüzey özelliklerine etkisi, özellikle de ıslatılabilirlik ve yansıtma özelliklerine olan etkileri araştırılmıştır. Bu çalışmada Ag altlık üzerine büyütülen birkaç tabakalı grafen filmlerin temas açıları 96.7o olarak tespit edilmiştir. Yapılan yüzey kaplamaları taramalı elektron mikroskobu (SEM), geçirimli elektron mikroskobu (TEM) ve Raman spektroskopisi çalışmaları ile karakterize edilmiştir.

Investigation of Reflection and Wettability Properties of Graphene Coated Silver Surface by Chemical Vapor Deposition Method

Graphene acts as a critical nanomaterial in preserving the surface properties of the materials. It is especially important to increase the corrosion resistance of chemically reactive metal surfaces in industrial applications. Studies have shown that graphene films with a smooth atomic structure, chemically inert, mechanical and thermal stability act as a superior corrosion and oxidation barrier. Silver metal is a metal with many superior optical properties such as surface plasmon resonance, with the highest reflectivity among all metals, together with its high electrical and thermal conductivity. Although silver does not oxidize in the atmosphere, due to the sulfur-containing gases in the air, silver sulfur (Ag2S) layer forms on the silver surface and darkens. This layer adversely affects surface properties such as electrical, optical and wettability. In this study, the effect of coating with graphene synthesized by chemical vapor deposition of silver surfaces commonly used in optical and electronic applications on surface properties, especially on wettability and reflectivity properties were investigated. In this study, the contact angles of few layers graphene films grown on Ag substrate were determined as 96.7o. Fabricated surface coatings were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy.

___

  • Ayhan ME, Kalita G, Papon R, Hirano R, Tanemura M, 2014. Synthesis of transfer-free graphene by solid phase reaction process in presence of a carbon diffusion barrier. Materials Letters, 129: 76-79.
  • Ayhan ME, Kalita G, Sharma S, Tanemura M, 2013. Chemical vapor deposition of graphene on silver foil as a tarnish‐resistant coating. physica status solidi (RRL)–Rapid Research Letters, 7: 1076-1079.
  • Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, 2010. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology, 5: 574.
  • Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, 2006. Electronic confinement and coherence in patterned epitaxial graphene. Science, 312: 1191-1196.
  • Chen Z, Qi Y, Chen X, Zhang Y, Liu Z, 2019. Graphene: Direct CVD Growth of Graphene on Traditional Glass: Methods and Mechanisms (Adv. Mater. 9/2019). Advanced Materials, 31: 1970067.
  • Coraux J, N’Diaye A, Engler M, Busse C, Wall D, Buckanie N. F.-JM z. Heringdorf, R. v. Gastel, B. Poelsema and T. Michely, 2009. New J. Phys, 11: 27.
  • Gao L, Guest JR, Guisinger NP, 2010. Epitaxial graphene on Cu (111). Nano letters, 10: 3512-3516.
  • Geim AK, Novoselov KS, 2010. The rise of graphene. İçinde:Nanoscience and Technology: A Collection of Reviews from Nature Journals, World Scientific, 11-19.
  • Gil A, Colchero J, Luna M, Gómez-Herrero J, Baro A, 2000. Adsorption of water on solid surfaces studied by scanning force microscopy. Langmuir, 16: 5086-5092.
  • Gray J, Luan B, 2002. Protective coatings on magnesium and its alloys—a critical review. Journal of alloys and compounds, 336: 88-113.
  • Hashim J, Looney L, Hashmi M, 2001. The wettability of SiC particles by molten aluminium alloy. Journal of Materials Processing Technology, 119: 324-328.
  • Hirano R, Matsubara K, Kalita G, Hayashi Y, Tanemura M 2012. Synthesis of transfer-free graphene on an insulating substrate using a solid phase reaction. Nanoscale, 4: 7791-7796.
  • Ismach A, Druzgalski C, Penwell S, Schwartzberg A, Zheng M, Javey A, Bokor J, Zhang Y, 2010. Direct chemical vapor deposition of graphene on dielectric surfaces. Nano letters, 10: 1542-1548.
  • Jacob MV, Rawat RS, Ouyang B, Bazaka K, Kumar DS, Taguchi D, Iwamoto M, Neupane R, Varghese OK, 2015. Catalyst-free plasma enhanced growth of graphene from sustainable sources. Nano letters, 15: 5702-5708.
  • Kalita G, Ayhan ME, Sharma S, Shinde SM, Ghimire D, Wakita K, Umeno M, Tanemura M, 2014. Low temperature deposited graphene by surface wave plasma CVD as effective oxidation resistive barrier. Corrosion Science, 78: 183-187.
  • Kalita G, Hirano R, Ayhan ME, Tanemura M, 2013. Fabrication of a Schottky junction diode with direct growth graphene on silicon by a solid phase reaction. Journal of Physics D: Applied Physics, 46: 455103.
  • Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH, 2009. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457: 706.
  • Kinlen PJ, Menon V, Ding Y, 1999. A mechanistic investigation of polyaniline corrosion protection using the scanning reference electrode technique. Journal of the Electrochemical Society, 146: 3690-3695.
  • Koishi T, Yasuoka K, Fujikawa S, Ebisuzaki T, Zeng XC, 2009. Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface. Proceedings of the National Academy of Sciences, 106: 8435-8440.
  • Lee C, Wei X, Kysar JW, Hone J, 2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321: 385-388.
  • Leenaerts O, Partoens B, Peeters F, 2009. Water on graphene: Hydrophobicity and dipole moment using density functional theory. Physical Review B, 79: 235440.
  • Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, 2009. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324: 1312-1314.
  • Milosevic A, 1992. The influence of surface finish and in‐vitro pellicle on contact‐angle measurement and surface morphology of three commercially available composite restoratives. Journal of oral rehabilitation, 19: 85-97.
  • Mittal V, Bera S, Saravanan T, Sumathi S, Krishnan R, Rangarajan S, Velmurugan S, Narasimhan S, 2009. Formation and characterization of bi-layer oxide coating on carbon-steel for improving corrosion resistance. Thin Solid Films, 517: 1672-1676.
  • Miwa M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T, 2000. Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir, 16: 5754-5760.
  • Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NM, Geim AK, 2008. Fine structure constant defines visual transparency of graphene. Science, 320: 1308-1308.
  • Novoselov KS, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim AK, 2005. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences, 102: 10451-10453.
  • Oh S, Cornie J, Russell K, 1989. Wetting of ceramic particulates with liquid aluminum alloys: Part II. Study of wettability. Metallurgical transactions A, 20: 533-541.
  • Oznuluer T, Pince E, Polat EO, Balci O, Salihoglu O, Kocabas C, 2011. Synthesis of graphene on gold. Applied Physics Letters, 98: 183101.
  • Prado M, de Assis DF, Gomes BP, Simao RA, 2011. Effect of disinfectant solutions on the surface free energy and wettability of filling material. Journal of endodontics, 37: 980-982.
  • Pushpavanam M, Raman V, Shenoi B. Rhodium—electrodeposition and applications. Surface Technology, 1981, 12: 351-360.
  • Rao BA, Iqbal MY, Sreedhar B, 2009. Self-assembled monolayer of 2-(octadecylthio) benzothiazole for corrosion protection of copper. Corrosion Science, 51: 1441-1452.
  • Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong* J, 2009 Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano letters, 9: 3087-3087.
  • Segarra M, Miralles L, Diaz J, Xuriguera H, Chimenos J, Espiell F, Pinol S, 2003. In Copper and CuNi alloys substrates for HTS coated conductor applications protected from oxidation, Materials Science Forum, Trans Tech Publications Ltd., Zurich-Uetikon, Switzerland: 3511-3516.
  • Shin YJ, Wang Y, Huang H, Kalon G, Wee ATS, Shen Z, Bhatia CS, Yang H, 2010. Surface-energy engineering of graphene. Langmuir, 26: 3798-3802.
  • Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS, 2006. Graphene-based composite materials. Nature, 442: 282.
  • Stratmann M, Feser R, Leng A, 1994. Corrosion protection by organic films. Electrochimica Acta, 39: 1207-1214.
  • Su C-Y, Lu A-Y, Wu C-Y, Li Y-T, Liu K-K, Zhang W, Lin S-Y, Juang Z-Y, Zhong Y-L, Chen F-R, 2011. Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano letters, 11: 3612-3616.
  • Taherian F, Marcon V, van der Vegt NF, Leroy F, 2013. What is the contact angle of water on graphene? Langmuir, 29: 1457-1465.
  • Wang S, Zhang Y, Abidi N, Cabrales L, 2009. Wettability and surface free energy of graphene films. Langmuir, 25: 11078-11081.
  • Werder T, Walther JH, Jaffe RL, Halicioglu T, Noca F, Koumoutsakos P, 2001. Molecular dynamics simulation of contact angles of water droplets in carbon nanotubes. Nano letters, 1: 697-702.
  • Wintterlin J, Bocquet M-L, 2009. Graphene on metal surfaces. Surface Science, 603: 1841-1852.
  • Young T, 1805. III. An essay on the cohesion of fluids. Philosophical transactions of the royal society of London, 65-87.
  • Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei S-S, 2008. Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 93: 113103.