Ti/ p-GaN Schottky Diyotunun Elektriksel Parametrelerinin İncelenmesi

Ti/p-GaN Schottky diyotunun elektriksel özellikleri araştırıldı. İdealite faktörü (n), engel yüksekliği (Фb) ve seri direnç (Rs) gibi temel diyot parametreleri akım-gerilim (I-V) karakteristiği özelliklerinden faydalanarak geleneksel I-V yöntemi, Cheung fonksiyonları ve Norde yöntemi ile incelendi. İdealite faktörü (n) I-V yönteminde 1.62 ve Cheung fonksiyonlarından 3.54 olarak hesaplandı. Farklı yöntemlerden hesaplanan engel yüksekliği (Фb) değerlerinin birbirine yakın değerlerde olduğu bulundu. Ti / p-GaN Schottky diyotunun hesaplanan seri direnç (Rs) değerleri de kohm mertebesinde olduğu görüldü. Ti/p-GaN Schottky diyotunun arayüzey durum yoğunluğunun büyüklüğü 6.35 × 1012 cm−2 eV−1 ile 3.48 × 1013 cm−2 eV−1 arasında değiştiği belirlendi.

Investigation of Electrical Parameters of Ti/ p-GaN Schottky Diode

The electrical properties of the Ti/p-GaN Schottky diode were investigated. Fundamental diode parameters such as ideality factor (n), barrier height (Фb) and series resistance (Rs) were analyzed using the traditional I-V method, Cheung functions and Norde method by utilizing current-voltage (I-V) characteristics. The ideality factor (n) was calculated as 1.62 in the I-V method and 3.54 from the Cheung functions. It was found that the barrier height (Фb) values calculated from different methods were close to each other. The calculated serial resistance (Rs) values of the Ti / p-GaN Schottky diode were also found to be of the order of kohm. The magnitude of the interface state density of the Ti/p-GaN Schottky diode was determined to vary between 6.35 × 1012 cm−2 eV−1 and 3.48 × 1013 cm−2 eV−1.

___

  • Asıl H, Gür E, Çınar K, Coşkun C, 2009. Electrochemical Growth of n-ZnO onto the p-type GaN Substrate: p-n Heterojunction Characteristics. Applied Physics Letters, 94: 253501, 1-3.
  • Asıl Uğurlu H, Çınar Demir K, Coşkun C, 2021. The Effect of Thermal Annealing on Ti/p-Si Schottky Diodes. Journal of Materials Science: Materials in Electronics, 32:15343–15351.
  • Card HC, Rhoderick EH, 1971. Studies of Tunnel MOS Diodes I. Interface Effects in Silicon Schottky Diodes. Journal of Physics D: Applied Physics, 4: 1589–1601.
  • Cheung SK, Cheung NW, 1986. Extraction of Schottky Diode Parameters from Forward Current-Voltage Characteristics. Applied Physics Letters, 49: 85-87.
  • Çakıcı T, Sağlam M, Güzeldir B, 2015. The Comparison of Electrical Characteristics of Au/n-InP/In and Au/In2S3/n-InP/In Junctions at Room Temperature. Materials Science and Engineering B, 193: 61–69.
  • Çınar K, Yıldırım N, Coşkun C, Türüt A, 2009. Temperature Dependence of Current-Voltage Characteristics in Highly Doped Ag/p-GaN/In Schottky Diodes. Journal of Applied Physics, 106: 073717, 1-5.
  • Deng G, Zhang Y, Yu Y, Han X, Wang Y, Shi Z, Dong X, Zhang B, Du G, Liu Y, 2020. High-Performance Ultraviolet Light-Emitting Diodes Using n-ZnO/p-hBN/p-GaN Contact Heterojunctions. ACS Applied Materials Interfaces, 12 (5): 6788–6792.
  • Duman S, Özçelik FS, Gürbulak B, Gülnahar M, Türüt A, 2015. Current–Voltage and Capacitance–Conductance–Voltage Characteristics of Al/SiO2/p-Si and Al/Methyl Green (MG)/p-Si Structures. Metallurgical and Materials Transactions A, 46(1): 347-353.
  • Fukushima Y, Ogisu K, Kuzuhara M, Shiojima K, 2009. I-V and C-V Characteristics of Rare-Earth-Metal/p-GaN Schottky Contacts. Physica Status Solidi C, 6 (2): 856–859.
  • Güçlü ÇŞ, Özdemir AF, Aldemir DA, 2019. Mo/n-Si Schottky Diyotların Akım-Voltaj ve Kapasite-Voltaj Karakteristiklerinin Analizi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7: 2142-2155.
  • Karataş Ş, Yıldırım N, Türüt A, 2013. Electrical Properties and İnterface State Energy Distributions of Cr/n-Si Schottky Barrier Diode. Superlattices and Microstructures, 64: 483–494.
  • Kim JW, Lee JW, 2005. Ti/Al p-GaN Schottky Barrier Height Determined by C–V Measurements. Applied Surface Science, 250: 247–251.
  • Lin YJ, Lee CT, Chang SS, Chang HC, 2008. Electronic Transport and Schottky Barrier Height of Ni Contact on p-type GaN. Journal of Physics D: Applied Physics, 41: 095107, 1-5.
  • Nagaraju G, Dasaradha Rao L, Rajagopal Reddy V, 2015. Annealing Effects on the Electrical, Structural and Morphological Properties of Ti/p-GaN/Ni/Au Schottky Diode. Applied Physics A, 121:131–140.
  • Norde H, 1979. A Modified Forward IV Plot for Schottky Diodes with High Series Resistance. Journal of Applied Physics, 50: 5052-5053.
  • Padma R, Nagarajua G, Rajagopal Reddy V, Chel-Jong Choi, 2016. Effect of Annealing Temperature on the Electrical and Structural Properties of V/p-GaN Schottky Structures. Thin Solid Films, 598: 236–242. Pearton SJ, Ren F, Zhang AP, Dang G, Cao XA, Lee KP, Cho H, Gila BP, Johnson JW, Monier C, Abernathy CR, Han J, Baca AG, Chyi JI, Lee CM, Nee TE, Chuo CC, Chu SNG, 2001. GaN Electronics for High Power, High Temperature Applications. Materials Science and Engineering B, 82: 227–231.
  • Rhoderick, EH, Williams, RH, 1988. Metal-Semiconductor Contacts, Second Edition pp. 257-267, Clarendon Press, Oxford.
  • Sağlam M, Biber M, Çakar M, Türüt A, 2004. The Effects of the Ageing on the Characteristic Parameters of Polyaniline/p-type Si/Al Structure. Applied Surface Science, 230: 404–410.
  • Saron KMA, Ibrahim M, Hashim MR, Taha TA, Elfadill NG, Mkawi EM, Allam NK, 2021. Leakage Current Reduction in n-GaN/p-Si (100) Heterojunction Solar Cells. Applied Physics Letters, 118: 023902, 1-7.
  • Tan CK, Abdul Aziz A, Yam FK, 2006. Schottky Barrier Properties of Various Metal (Zr, Ti, Cr, Pt) Contact on p-GaN Revealed from I–V–T Measurement. Applied Surface Science, 252: 5930–5935.
  • Tataroğlu A, 2013. Comparative Study of the Electrical Properties of Au/n-Si (MS) and Au/Si3N4/n-Si (MIS) Schottky Diodes. Chinnese Physics B, vol. 22(6): 068402, 1-6.
  • Zhou G, Jiang Y, Yang G, Wang Q, Fan M, Jiang L, Yu H, Xia G, 2021. Formation of Ultra-High-Resistance Au/Ti/p-GaN Junctions and the Applications in AlGaN/GaN HEMTs. AIP Advances, 11: 045207, 1-6.