Synthesis and Enantiomeric Recognition Studies of Novel C2-Symmetrical Chiral Tetra-Amide Compounds

Two novel C2-symmetrical chiral tetraamide compounds derived from (S)-isoleucine were synthesised and their enantiomeric recognition abilities towards enantiomers of some amino acid esters and 1-arylethylamins were examined by UV-titration method. These receptor compounds exhibited strong complexation (with Ka up to 5787.23 M-1) and very good enantioselectivity (up to KaS/KaR= 13.98).

Synthesis and Enantiomeric Recognition Studies of Novel C2-Symmetrical Chiral Tetra-Amide Compounds

Two novel C2-symmetrical chiral tetraamide compounds derived from (S)-isoleucine were synthesised and their enantiomeric recognition abilities towards enantiomers of some amino acid esters and 1-arylethylamins were examined by UV-titration method. These receptor compounds exhibited strong complexation (with Ka up to 5787.23 M-1) and very good enantioselectivity (up to KaS/KaR= 13.98).

___

  • Aral H, Aral T, Çolak M, Ziyadanoğulları B, Ziyadanoğulları R,2013. C2-Symmetric chiral diamine ligands for enantiomeric recognition of amino acid esters and mandelic acid by proton NMR titration method. Turkish Journal of Chemistry, 37:374-382. doi: 10.3906/kim-1207-58
  • Aral H, Çelik KS, Altındağ R, Aral T, 2017. Synthesis, characterization, and application of a novel multifunctional stationary phase for hydrophilic interaction/reversed phase mixed-mode chromatography. Talanta, 174:703-714. doi: 10.1016/j.talanta.2017.07.014
  • Aydın I, Aral T, Karakaplan M, Hoşgören H, 2009. Chiral lariat ethers as membrane carriers for chiral amino acids and their sodium and potassium salts. Tetrahedron: Asymmetry, 20(2):179-183. doi: 0.1016/j.tetasy.2009.01.005
  • Bako P, Keglevich G, Rapi Z, Toke L, 2012. The enantiomeric differentiation ability of chiral crown ethers based on carbohydrates. Current Organic Chemistry, 16:297-304. doi: 10.2174/138527212799499877
  • Ballistreri FP, Pappalardo A, Tomaselli GA, Toscano RM, Sfrazzetro GT, 2010. Heteroditopic chiral uranyl–salen receptor for molecular recognition of amino acid ammonium salts. European Journal of Organic Chemistry, 3806-3810. doi: 10.1002/ejoc.201000566
  • Bennesi HA, Hildebrand JH, 1949. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. Journal of the American Chemical Society, 71(8):2703-2707. doi: 10.1021/ja01176a030
  • Bohanon TM, Caruso PL, Denzinger S, Fink R, Mobius D, et al., 1999. Molecular recognition-induced function and competitive replacement by hydrogen-bonding interactions: Amphiphilic barbituric acid derivatives, 2,4,6-triaminopyrimidine, and related structures at the air−water interface. Langmuir, 15(1):174-184. doi: 10.1021/la980348w
  • Chadwick DJ, Cliffe IA, Sutherland IO, Newton RF, 1984. The formation of complexes between aza derivatives of crown ethers and primary alkylammonium salts. Part 7. Chiral derivatives of aza crown ethers. Journal of the Chemical Society, Perkin Transactions 1, 1707-1717. doi: 10.1039/P19840001707
  • Demirtas HN, Bozkurt S, Durmaz M, Yilmaz M, Sirit A, 2009. Chiral calix[4]azacrowns for enantiomeric recognition of amino acid derivatives. Tetrahedron, 65(15):3014-3018. doi: 10.1016/j.tet.2009.01.087
  • Deniz P, Turgut Y, Toğrul M, Hoşgören H, 2011. Pyridine containing chiral macrocycles: synthesis and their enantiomeric recognition for amino acid derivatives. Tetrahedron, 67(34):6227-6232. doi: 10.1016/j.tet.2011.06.064
  • Diederich F, 1988. Complexation of neutral molecules by cyclophane hosts. Angewandte Chemie International Edition in English, 27(3):362-386. doi: 10.1002/anie.198803621
  • Fitzmaurice RJ, Kyne GM, Douheret D, Kilburn JD, 2002. Synthetic receptors for carboxylic acids and carboxylates. Journal of the Chemical Society, Perkin Transactions 1, 7:841-864. doi: 10.1039/B009041G
  • Forte G, D’Urso A, Ballistreri FP, Tuscano RM, Tomaselli GA, et al., 2015. Enantiomeric recognition of α-amino acid derivatives by chiral uranyl–salen receptors. Tetrahedron Letters, 56(22):2922-2926. doi: 10.1016/j.tetlet.2015.04.092
  • Guo S, Wang G, Ai L, 2013. Synthesis of macrocycles and their application as chiral solvating agents in the enantiomeric recognition of carboxylic acids and α-amino acid derivatives. Tetrahedron: Asymmetry, 24(8):480-491. doi: 10.1016/j.tetasy.2013.03.005
  • Hembury GA, Borovkov VV, Inoue Y, 2008. Chirality-sensing supramolecular systems. Chemical Reviews, 108(1):1-73. doi: 10.1021/cr050005k
  • Horvath G, Hutszthy P, Szarvas S, Szokan G, Redd JT, et al., 2000. Preparation of a new chiral pyridino-crown ether-based stationary phase for enantioseparation of racemic primary organic ammonium salts. Industrial & Engineering Chemistry Research, 39(10):3576–3581. doi: 10.1021/ie000272a
  • Howard JA, Nonn M, Fulop F, Wenzel TJ, 2013. Enantiomeric discrimination of isoxazoline fused β-amino acid derivatives using (18-crown-6)-2,3,11,12-tetracarboxylic acid as a chiral NMR solvating agent. Chirality, 25(1):48-53. doi: 10.1002/chir.22114
  • Izatt RM, Wang T, Hathaway JK, Zhang XX, Curtis JC, et al., 1994. Factors influencing enantiomeric recognition of primary alkylammonium salts by pyridino-18-crown-6 type ligands. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 17(2):157-175. doi: 10.1007/BF00711856
  • Karakaplan M, Aral T, 2005. Synthesis of new chiral crown ethers containing a (p-methoxyphenoxy)methyl moiety and their chiral recognition ability towards amino acid esters. Tetrahedron: Asymmetry, 16(12):2119-2124. doi: 10.1016/j.tetasy.2005.05.019
  • Kizirian JC, Caille JC, Alexakis A, 2003. Conceptually new chiral tertiary C2 symmetric diamines in asymmetric synthesis. Tetrahedron Letters, 44(49):8893-8895. doi: 10.1016/j.tetlet.2003.09.171
  • Kormos A, Moczar I, Baranyai P, Kupai J, Toth K, et al., 2013. Synthesis and enantiomeric recognition studies of a novel 5,5-dioxophenothiazine-1,9 bis(thiourea) containing glucopyranosyl groups. Tetrahedron: Asymmetry 24(1):62-65. doi: 10.1016/j.tetasy.2012.11.020
  • Köylü MZ, Aral T, Karakaplan M, Kocakaya ŞÖ, Hoşgören H, 2011. Enantioselective complexation of chiral lariat crown ethers and chiral primary alkylammonium perchlorates. Turkish Journal of Chemistry, 35(2):171-179. doi: 10.3906/kim-1008-844
  • Lee T, Lee W, Hyun MH, Park JH, 2010. Enantioseparation of α-amino acids on an 18-crown-6-tetracarboxylic acid-bonded silica by capillary electrochromatography. Journal of Chromatography A, 1217(8):1425-1428. doi: 10.1016/j.chroma.2009.12.064
  • Liu TJ, Chen YY, Zhang KS, Wang D, Guo DW, et al., 2001. Enantiomeric recognition of chiral 3,3-bridged-1,1′-binaphthol dimer toward α-phenylethylamine and α-amino acid ester. Chirality, 13:595-600. doi: 10.1002/chir.1183
  • Liu L, He C, Yang L, Huang Y, Wu Q, et al., 2014. Novel C1-symmetric chiral crown ethers bearing rosin acids groups: synthesis and enantiomeric recognition for ammonium salts. Tetrahedron, 70(50):9545-9553. doi: 10.1016/j.tet.2014.10.050
  • Lu JT, Wu LZ, Jiang JZ, Zhang XM, 2010. Helical nanostructures of an optically active metal-free porphyrin with four optically active binaphthyl moieties: Effect of metal–ligand coordination on the morphology. European Journal of Inorganic Chemistry, 25:4000-4008. doi: 10.1002/ejic.201000358
  • Marchi-Artzner V, Artzner F, Karthaus O, Shimomura M, Ariga K, et al., 1998. Molecular recognition between 2,4,6-triaminopyrimidine lipid monolayers and complementary barbituric molecules at the air/water interface: effects of hydrophilic spacer, ionic strength, and pH. Langmuir, 14(18):5164-5171. doi: 10.1021/la971192n
  • Nakashima K, Iguchi R, Shinkai S, 2000. Diaza-18-crown-6-based saccharide receptor bearing two boronic acids. Possible communication between bound saccharides and metal cations. Industrial & Engineering Chemistry Research, 39(10):3479-3483. doi: 10.1021/ie000225i
  • Paik MJ, Kang JS, Huang BY, Carey JR, Lee W, 2013. Development and application of chiral crown ethers as selectors for chiral separation in high-performance liquid chromatography and nuclear magnetic resonance spectroscopy. Journal of Chromatography A, 1274:1-5. doi: 10.1016/j.chroma.2012.11.086
  • Pal D, Moczar I, Kormos A, Baranyai P, Ovari L, et al., 2015. Synthesis and enantiomeric recognition studies of optically active acridone bis(urea) and bis(thiourea) derivatives. Tetrahedron: Asymmetry, 26 (23):1335-1340. doi: 10.1016/j.tetasy.2015.10.004
  • Pal D, Moczar I, Kormos A, Baranyai P, Huszthy P, 2016. Synthesis and enantiomeric recognition studies of optically active 5,5-dioxophenothiazine bis(urea) and bis(thiourea) derivatives. Tetrahedron: Asymmetry, 27(19):918-922. doi: 10.1016/j.tetasy.2016.08.002
  • Park JY, Jin KB, Hyun MH, 2012. Liquid chromatographic resolution of 3-amino-1,4-benzodiazepin-2-ones on crown ether-based chiral stationary phases. Chirality, 24:427-431. doi: 10.1002/chir.22041
  • Peri F, Maggi R, Palla G, Bigi F, Corradini R, et al., 1998. Discrimination properties of tetraamidic branched selectors. Journal of Chromatography A, 802(2):315-324. doi: 10.1016/S0021-9673(97)01190-4
  • Pu L, 2004. Fluorescence of organic molecules in chiral recognition. Chemical Reviews, 104(3):1687-1716. doi: 10.1021/cr030052h
  • Qing G, Sun T, Chen Z, Yang X, Wu X, et al., 2009. ‘Naked-eye’ enantioselective chemosensors for N-protected amino acid anions bearing thiourea units. Chirality, 21(3):363-373. doi: 10.1002/chir.20593
  • Sipos L, Ilisz I, Aranyi A, Gecse Z, Nonn M, et al., 2012. High-performance liquid chromatographic enantioseparation of unusual isoxazoline-fused 2-aminocyclopentanecarboxylic acids on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid-based chiral stationary phases. Chirality, 24(10):817-824. doi: 10.1002/chir.22077
  • Su X, Luo K, Xiang Q, Lan J, Xie R, 2009. Enantioselective recognitions of chiral molecular tweezers containing imidazoliums for amino acids. Chirality, 21(5):539-546. doi: 10.1002/chir.20635
  • Şeker S, Barış D, Arslan N, Turgut Y, Pirinççioğlu N, et al., 2014. Synthesis of rigid and C2-symmetric pyridino-15-crown-5 type macrocycles bearing diamide–diester functions: Enantiomeric recognition for chiral primary organoammonium perchlorate salts. Tetrahedron: Asymmetry 25(5):411-417. doi: 10.1016/j.tetasy.2014.01.009
  • Tang Z, Cun LF, Cui X, Mi AQ, Jiang JZ, et al., 2006. Design of highly enantioselective organocatalysts based on molecular recognition. Organic Letters, 8(7):1263-1266. doi: 10.1021/ol0529391
  • Tsioupi DA, Stefan-van Staden RI, Kapnissi-Christodoulou CP, 2013. Chiral selectors in CE: Recent developments and applications. Electrophoresis, 34:178-204. doi: 10.1002/elps.201200239
  • Turgut Y, Aral T, Hoşgören H, 2009. Synthesis of novel C2-symmetric chiral crown ethers and investigation of their enantiomeric recognition properties. Tetrahedron: Asymmetry, 20(19):2293-2298. doi: 10.1016/j.tetasy.2009.09.010
  • Ulatowski F, Jurczak J, 2014. Enantiomeric recognition of carboxylic anions by a library of neutral receptors derived from α-amino acids and o-phenylenediamine. Tetrahedron: Asymmetry, 25(13):962-968. doi: 10.1016/j.tetasy.2014.06.004
  • Wang Z, Wei S, Wang C, Sun J, . Enantioselective hydrosilylation of ketimines catalyzed by Lewis basic C2-symmetric chiral tetraamide. Tetrahedron: Asymmetry, 18(6):705-709. doi: 10.1016/j.tetasy.2007.03.008
  • Yi YR, Kim KS, Helal A, Kim HS, 2013. Molecular recognition of ω-amino acids by thiazolobenzocrown receptors: a GABA-selective ionophore. Supramolecular Chemistry, 25:16-23. doi: 10.1080/10610278.2012.726731
  • Zhang X, Yin J, Yoon J, 2014. Recent advances in development of chiral fluorescent and colorimetric sensors. Chemical Reviews, 114:4918–4959. doi: 10.1021/cr400568b