Su Altı Yapılarının 3B Modellemesi ve Dokümantasyonunda Kullanılan Video ve Fotoğraf Çekimi Yöntemlerinin Karşılaştırmalı Analizi

Su altındaki bir cismin üç boyutlu olarak belgelenmesi ve dijital platformlara aktarılması son yıllarda önem kazanmıştır. Bu amaçla fotogrametri yöntemi su altında denenmiş ve sualtı fotogrametrisi terimi literatürde kendine yer bulmuştur. Fotogrametri yönteminin tercih edilmesinin en önemli nedeni geleneksel yöntemlere göre daha kısa sürede veri üretimi, zaman ve maliyet açısından olumlu katkı sağlamasıdır. Ancak su altında fotografik veri toplayan dalgıçlar su altında sınırlı bir süre kalabildikleri için fotoğraflama işlemi tekrarlanmakta ve süreç uzamaktadır. Bu olumsuzluğu en aza indirmek için video çekim yöntemiyle veri elde etme çalışmaları denenmeye başlanmıştır. Bu çalışmada, bir havuza test amaçlı obje yerleştirilerek hem fotoğraf çekim hem de video çekim yöntemi ile üç boyutlu model üretiminin karşılaştırılmalı analizi yapılmıştır. Çalışma sonucunda video çekim yönteminin doğruluğunu test etmek için fotoğraf çekim yöntemi referans kabul edilmiştir. Her iki veriden elde edilen üç boyutlu nokta bulutları karşılaştırılarak doğruluk analizi yapılmış video çekim yönteminin karesel ortalama hatası ± 3.24 cm olarak tespit edilmiştir. Bu çalışma ile su altında video çekim yönteminin kullanılabilirliği araştırılmış sonuç olarak video çekim yönteminin doğruluk açısında yeterli düzeyde olduğu tespit edilmiş fakat görsel açıdan yetersiz bulunmuştur.

Comparative Analysis of Video and Photograph Methods Used in 3D Modeling and Documentation of Underwater Objects

It has been important in recent years to documention an underwater object as a three-dimensional and to transfer it to digital platforms. For this purpose, the photogrammetry method has been tried underwater and the term underwater photogrammetry has made ground in the literature. The most important reason for choosing a photogrammetry method is that it can product data in less time than traditional methods, and contribute positively in terms of time and cost. However, because divers that collect photographic data underwater can stay underwater for a limited duration, the photographing process is repeated and the process is prolonged. In order to minimize this disadvantage, data acquisition studies by videogrammetry method have started to be examined. In this study, a comparative analysis of three-dimensional model creation was made by placing a test object in a pool and using both photography and videogrammetry methods. As a result of the study, the photography method was accepted as a reference to test the accuracy of the video method. The accuracy study was carried out by comparing the three-dimensional point clouds acquired from both data sets, and the mean square error was determined to be 3.24 cm. The utility of the underwater video technique was explored in this study, and it was established that the video method was adequate in terms of accuracy but unsatisfactory visually.

___

  • Akçay Ö, Erenoğlu R C, Avşar E Ö, 2017. The Effect of Jpeg Compressıon In Close Range Photogrammetry. International Journal of Engineering and Geosciences, 2 (1): 35-40.
  • Bakker M, Lane S N, 2017. Archival Photogrammetric Analysis of River–Floodplain Systems Using Structure from Motion (SfM) methods. Earth Surface Processes and Landforms, 42 (8): 1274-1286.
  • Balletti C, Guerra F, Scocca V, Gottardi C, 2015. 3D Integrated Methodologıes for The Documentation and the Virtual Reconstructıon of an Archaeologıcal Site. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences. Volume XL-5/W4, 2015 3D Virtual Reconstruction and Visualization of Complex Architectures, 25-27 February 2015, Avila, Spain
  • Bernardina G R, Cerveri P, Barros R M, Marins J C, Silvatti A P, 2017. In-air Versus Underwater Comparison of 3D Reconstruction Accuracy Using Action Sport Cameras. Journal of biomechanics, 51: 77-82.
  • Bernardina G R, Cerveri P, Barros R M, Marins J C, Silvatti A P, 2016. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis. PloS one, 11 (8): e0160490.
  • Block M, Dworsky C, Löw C, da Fonseca H S, Gehmlich B, Wittchen D, Ducke B, 2017. Underwater Videogrammetry with Adaptive Feature Detection at" See am Mondsee", Austria. Studies in Digital Heritage, 1 (2): 547-565.
  • Brown D C, 1971. Lens distortion for Close-range photogrammetry. Photometric Engineering, 37 (8): 855-866.
  • Casella E, Collin A, Harris D, Ferse S, Bejarano S, Parravicini V, Rovere A, 2017. Mapping Coral Reefs Using Consumer-Grade Drones and Structure From Motion Photogrammetry Techniques. Coral Reefs, 36 (1): 269-275.
  • Chun J B, Jung H, Kyung C M, 2008. Suppressing Rolling-shutter Distortion of CMOS Image Sensors by motion Vector Detection. IEEE Transactions on Consumer Electronics, 54 (4): 1479-1487.
  • David C G, Kohl N, Casella E, Rovere A, Ballesteros P, Schlurmann T, 2021. Structure-from-Motion on Shallow Reefs and Beaches: Potential and Limitations of Consumer-grade Drones to Reconstruct Topography and Bathymetry. Coral Reefs, 40 (3): 835-851.
  • Doğan Y, Yakar M, 2018. Gıs And Three-Dımensıonal Modelıng For Cultural Herıtages. International Journal of Engineering and Geosciences, 3 (2): 50-55.
  • Drap P, Merad D, Hijazi B, Gaoua L, Nawaf M M, Saccone M, Castro F, 2015. Underwater Photogrammetry and Object Modeling: a case study of Xlendi Wreck in Malta. Sensors, 15 (12): 30351-30384.
  • Fidan D, 2021. Arkeolojik Yüzey Araştırması Tahmin Haritalarının Uzaktan Algılama ve Coğrafi Bilgi Sistemleri ile Oluşturulması: Mersin İli, Silifke İlçesi Örneği. Türkiye Coğrafi Bilgi Sistemleri Dergisi, 3 (1): 10-23.
  • Fryer J G, Brown D C, 1986. Lens Distortion for Close-range Photogrammetry. Photogrammetric engineering and remote sensing, 52: 51-58.
  • Fryer J G, Fraser C S, 1986. On the Calibration of Underwater Cameras. The Photogrammetric Record, 12 (67): 73-85.
  • Girardeau-Montaut D, 2016. CloudCompare Point Cloud Processing Workshop, http://pcp2019.ifp.uni-stuttgart.de/presentations/04-CloudCompare_PCP_2019_public.pdf (Erişim Tarihi: 10.03.2022)
  • Guo T, Capra A, Troyer M, Grün A, Brooks A J, Hench J L, Dubbini M, 2016. Accuracy Assessment of Underwater Photogrammetric Three Dimensional Modelling for Coral Reefs. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41 (B5): 821-828.
  • Güneş A E, 2019. Nitrojen Narkozu. ss 67-76. Aktaş, Ş. 2019. Eğitmenler için Dalış Sağlığı, Türk Deniz Araştırmaları Vakfı (TÜDAV) Yayın no: 51, Istanbul, Türkiye.
  • Helmholz P, Long J, Munsie T, Belton D, 2016. Accuracy Assessment of GoPro Hero 3 (Black) Camera in Underwater Environment. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B5, 2016, XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic.
  • Jafari B, Khaloo A, Lattanzi D, 2017. Deformation Tracking in 3D Point Clouds Via Statistical Sampling of Direct Cloud-To-Cloud Distances. Journal of Nondestructive Evaluation, 36 (4): 1-10.
  • Kahraman B B, Aşiret G D, Devrez N, Özdemir L, Akdemir N, 2012. Dalış Sporu ve Dalışlarda Yaşanan Sağlık Sorunlarının Önlenmesinde Hemşirenin Rolü. Hacettepe Üniversitesi Hemşirelik Fakültesi Dergisi, 19 (1): 73-81.
  • Kaya F Z, Akçay Ö, Avşar E Ö, Aydar U, 2019. Su Altı Fotogrametrik Belgelemede Güncel Uygulamalar. 17. Türkiye Harita Bilimsel ve Teknik Kurultayı, 25-27 Nisan 2019, Ankara.
  • Kaya Y, Şenol H İ, Polat N, 2021. Three-dimensional modeling and drawings of stone column motifs in Harran Ruins. Mersin Photogrammetry Journal, 3 (2): 48-52.
  • Korumaz A G, Dülgerler O N, Yakar M, 2011. Kültürel Mirasın Belgelenmesinde Dijital Yaklaşımlar. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 26 (3): 67-83.
  • Kujawa P, 2021. Comparison of 3D Models of An object Placed in Two Different Media (Air And Water) Created on The Basis of Photos Obtained with a Mobile Phone Camera. In IOP Conference Series: Earth and Environmental Science, 684 (1): 012032.
  • Maas H G, 2015. On the Accuracy Potential in Underwater/Multimedia Photogrammetry. Sensors, 15 (8): 18140-18152.
  • Menna F, Nocerino E, Fassi F, Remondino F, 2016. Geometric and Optic Characterization of a Hemispherical Dome Port for Underwater Photogrammetry. Sensors, 16 (1): 48.
  • Menna F, Nocerino E, Remondino F, 2018. Photogrammetric Modelling of Submerged Structures: Influence of Underwater Environment and Lens Ports on Three-Dimensional (3D) Measurements.
  • Latest Developments in Reality-based 3D Surveying and Modelling, MDPI, Basel, Switzerland, 279-303.
  • Morgan J A, Brogan D J, Nelson P A, 2017. Application of Structure-from-Motion Photogrammetry in Laboratory Flumes. Geomorphology, 276: 125-143.
  • Piazza P, Cummings V, Guzzi A, Hawes I, Lohrer A, Marini S, Schiaparelli S, 2019. Underwater Photogrammetry in Antarctica: long-term observations in benthic ecosystems and legacy data rescue. Polar Biology, 42 (6): 1061-1079.
  • Polat N, Önal M, Kaya Y, Memduhoğlu A, Kaya N, Ulukavak M, Mutlu S, 2021. Harran Ören Yeri Kazısında Bulunan kabartma Yazıların Üç Boyutlu Olarak Modellenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 10 (2): 594-601.
  • Raoult V, David P A, Dupont S F, Mathewson C P, O’Neill S J, Powell N N, Williamson J E, 2016. GoPros™ as an Underwater Photogrammetry Tool For Citizen Science. PeerJ, 4: e1960.
  • Rossi P, Castagnetti C, Capra A, Brooks A J, Mancini F, 2020. Detecting Change in Coral Reef 3D Structure Using Underwater Photogrammetry: Critical İssues and Performance Metrics. Applied Geomatics, 12 (1): 3-17.
  • Sanz-Ablanedo E, Chandler J H, Rodríguez-Pérez J R, Ordóñez C, 2018. Accuracy of Unmanned Aerial Vehicle (UAV) and SfM Photogrammetry Survey as A Function of the Number and Location of Ground Control Points Used. Remote Sensing, 10 (10): 1606.
  • Sefercik U G, Tanrıkulu F, Atalay C, 2020. SFM Tabanlı Yeni Nesil Görüntü Eşleştirme Yazılımlarının Fotogrametrik 3B Modelleme Potansiyellerinin Karşılaştırması. Türkiye Fotogrametri Dergisi, 2 (2): 39-45.
  • Seyrek E C, Narin Ö G, Eroğlu M M, 2022. Nokta Bulutu Üretiminde Cep Telefonu ve DSLR Fotoğraf Makinesi Kullanımının Araştırılması. Türkiye Fotogrametri Dergisi, 4 (1): 23-29.
  • Smith M W, Carrivick J L, Quincey D J, 2016. Structure From Motion Photogrammetry in Physical Geography. Progress in Physical Geography, 40 (2): 247-275.
  • Şenol H İ, Memduhoglu A, Ulukavak M, 2020. Multi Instrumental Documentation and 3D Modelling of an Archaeological Site: A Case Study in Kizilkoyun Necropolis Area. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 11 (3): 1241-1250.
  • Şenol H İ, Polat N, Kaya Y, Memduhoğlu A, Ulukavak M. 2021. Digital documentation of ancient stone carving in Şuayip City. Mersin Photogrammetry Journal, 3 (1): 10-14.
  • Telem G, Filin S, 2010. Photogrammetric modeling of underwater environments. ISPRS journal of photogrammetry and remote sensing, 65 (5): 433-444.
  • Van Damme T, 2015. Computer vision photogrammetry for underwater archaeological site recording in a low-visibility environment. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40 (5): 231.
  • Vogler V, Schneider S, Willmann J, 2019. High-Resolution Underwater 3-D Monitoring Methods to Reconstruct Artificial Coral Reefs in the Bali Sea: A Case Study of an Artificial Reef Prototype in Gili Trawangan. Journal of Digital Landscape Architecture, 275-289.
  • Vogler V, 2019. Close Range Underwater Photogrammetry for High Resolution Survey of a Coral Reef: A Comparison between Reconstructed 3-D Point Cloud Models from Still Image and Video Data. In Tagungsband zur Konferenz Go-3D, 107-20.
  • Wang Y, Ji Y, Woo H, Tamura Y, Tsuchiya H, Yamashita A, Asama H, 2020. Acoustic Camera-Based Pose Graph SLAM for Dense 3-D Mapping in Underwater Environments. IEEE Journal of Oceanic Engineering, 46 (3): 829-847.
  • Yakar M, Yılmaz H M, 2008. Kültürel Miraslardan Tarihi Horozluhan’ın Fotogrametrik Rölöve Çalışması Ve 3 Boyutlu Modellenmesi. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 23 (2): 25-33.
  • Yakar M, Yılmaz H M, Mutluoğlu Ö, 2009. Hacim Hesaplamalarında Laser Tarama Ve Yersel Fotogrametrinin Kullanılması. TMMOB Harita ve Kadastro Mühendisleri Odası 12. Türkiye Harita Bilimsel ve Teknik Kurultayı, 11-15 Mayıs, Ankara
  • Yamafune K, 2016. Using Computer Vision Photogrammetry (Agisoft Photoscan) to Record and Analyze Underwater Shipwreck Sites. Texas A&M Universitesi, Doktora Tezi, 82-94s, Texas.
  • URL-1: https://skfb.ly/ots6s
  • URL-2: https://skfb.ly/ots6B
Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2146-0574
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: -
Sayıdaki Diğer Makaleler

Permütasyon Entropi Tabanlı Karmaşıklık Analizi ile EEG İşaretlerinden Şizofreni Tespiti

Hasan POLAT

Geleneksel Yöntemle Üretilen Malatya Peynirinin Bazı Kimyasal ve Biyokimyasal Özellikleri Üzerine Ambalaj Çeşidi ve Farklı Depolama Koşullarının Etkisi

Doğan YAŞAR, Şenol KÖSE

Deep Learning Approaches for Classification of Breast Cancer in Ultrasound (US) Images

İshak PACAL

Meta-Siyanobenzil-Sübstitüentli NHC İçeren Yeni Pd(II)PPh3 Kompleksi: Kristal Yapı ve Hesaplamalı Çalışmalar

Betül ŞEN

Atmosferik Koşullara Bağlı Olarak CH3NH3PbI3 İnce Filmlerin Karanlık ve Fotoiletkenlik Davranışı

Ayşegül TAŞÇIOĞLU, Gökhan YILMAZ

Effects of Van der Waals Interaction and Hubbard Term Correction on First Principles Calculations of Structural and Lattice Dynamical Properties of AgCl

Pınar BULUT

Finite Element Analysis-Based Evaluation of the Patient-Specific Spinal Rods for a Reduced Risk of Adjacent Segment Disease

Abdullah Tahir ŞENSOY

Organik Bitkisel ve Hayvansal Üretim, Ürün, Bilgi ve Tüketim Alışkanlıkları

Tugay AYAŞAN, Esra GÜRSOY, Merve ÇETİN, Köksal KARADAŞ, Şenol ÇELİK, Şevval AYAŞAN

Defektif Homolog Rekombinasyon DNA Tamiri ve PARP İnhibisyonu Arasındaki Sentetik Letal Etkileşim

Yusuf TOY, Ramazan GUNDOGDU, Aydın SEVER, Mehmet Kadir ERDOĞAN

Determination Effects of Rheum ribes L. against High Calorie Diet-induced Obesity: Investigation of Changes in Immunologic and Neurologic Enzymes Activities

Bedia BATİ