Screening of Inhibitory Effects Lanosterol on Butyrylcholinesterase, Acetylcholinesterase and Carbonic Anhydrase Enzymes

Screening of Inhibitory Effects Lanosterol on Butyrylcholinesterase, Acetylcholinesterase and Carbonic Anhydrase Enzymes

In this study, for the first time, the antiglaucoma and anticholinergic properties from lanosterol were appraised and researched using different bioanalytical methods and compared with standards. Lanosterol is the compound from which entire fungal and animal steroids are derived. Moreover, is a tetracyclic triterpenoid. Lanosterol is a component in over-the-counter ophthalmic products to prohibit cataracts. The inhibition effects of lanosterol were tested against the butyrylcholinesterase (BChE), carbonic anhydrase I and II (CA I and II) and acetylcholinesterase (AChE), which are associated with some global diseases like Alzheimer’s disease (AD) and glaucoma. Lanosterol were trialed for the inhibition of BChE, AChE, hCA I and II enzymes and indicated efficient inhibition profiles with Ki values in the range of 61.77±22.32 nM against hCA I, 101.11±49.74 nM against hCA II, 2.03±1.21 nM against acetylcholinesterase and 8.39±2.92 nM against butyrylcholinesterase.

___

  • Ahmed, A., Channar, P.A., Saeed, A., Kalesse, M., Kazi, M.A., Larik, F.A., Abbas, Q., Hassan, M., Raza, H., & Seo, S.Y. (2019). Synthesis of sulfonamide, amide and amine hybrid pharmacophore, an entry of new class of carbonic anhydrase II inhibitors and evaluation of chemo-informatics and binding analysis. Bioorganic Chemistry, 86, 624–630.
  • Ahmed, A., Shafique, I., Saeed, A., Shabir, G., Saleem, A., Taslimi, P., Tok, T.T., Kırıcı, M., Uc, E. M., & Hashmi, M. Z. (2022). Nimesulide linked acyl thioureas potent carbonic anhydrase I, II and α-glucosidase inhibitors: Design, synthesis and molecular docking studies. European Journal of Medicinal Chemistry Reports, 6, 100082.
  • Akıncıoğlu, A., Topal, M., Gulcin, I., & Goksu, S. (2014). Novel sulfamides and sulfonamides incorporating tetralin scaffold as carbonic anhydrase and acetylcholine esterase inhibitors. Archiv der Pharmazie, 347, 68-76.
  • Akıncıoğlu, A., Akıncıoğlu, H., Gülçin, İ., Durdagi, S., Supuran, C. T., & Göksu, S. (2015). Discovery of potent carbonic anhydrase and acetylcholine esterase inhibitors: Novel sulfamoylcarbamates and sulfamides derived from acetophenones. Bioorganic & medicinal chemistry, 23(13), 3592-3602.
  • Arsava, M. (2003). Dr Alois Alzheimer. Selekler, K. (Ed.), In Alzheimer's and Other Dementias. Güneş Kitabevi, pp 1-3.
  • Bal, S., Demirci, O., Sen, B., Taslimi, P., Aktas, A., Gok, Y., Aygun, M., & Gulcin, I. (2021). PEPPSI type Pd(II)NHC complexes bearing Chloro-/fluorobenzyl group: Synthesis, characterization, crystal structures, α-glycosidase and acetylcholinesterase inhibitory properties. Polyhedron, 198:115060.
  • Behcet, A., Caglılar, T., Celepci, D., Aktas, A., Taslimi, P., Gok, Y., Aygün, M., Kaya, R., & Gulcin, I. (2018). Synthesis, characterization and crystal structure of 2-(4-hydroxyphenyl)ethyl and 2-(4-nitrophenyl)ethyl substituted benzimidazole bromide salts: their inhibitory properties against carbonic anhydrase and acetylcholinesterase. Journal of Molecular Structure, 1170, 160–169.
  • Beydemir, S. Ü., & Gülçin, İ. (2004). Effects of melatonin on carbonic anhydrase from human erythrocytes in vitro and from rat erythrocytes in vivo. Journal of Enzyme Inhibition and Medicinal Chemistry, 19(2), 193-197.
  • Bloemendal, H. (2004). Ageing and vision: structure, stability and function of lens crystallins. Progress in Biophysics and Molecular Biology, 86, 407–485.
  • Bora, R. E., Bilgicli, H. G., Uc, E.M., Alagöz, M. A., Zengin, M., & Gulcin, I. (2022). Synthesis, characterization, evaluation of metabolic enzyme inhibitors and in silico studies of thymol based 2-amino thiol and sulfonic acid compounds. Chemico-Biological Interactions, 366, 110-134.
  • Burmaoglu, S., Kazancioglu, A.E., Kazancioglu, M.Z., Saglamtas, R., Yalcın, G., Gulcin, I., & Algul, O. (2022). Synthesis, molecular docking and some metabolic enzyme inhibition properties of biphenyl-substituted chalcone derivatives. Journal of Molecular Structure, 1254, 132358.
  • Ceylan, M., Kocyigit, U. M., Usta, N. C., Gurbuzlu, B., Temel, Y., Alwasel, S. H., &Gulcin, I. (2017). Synthesis, carbonic anhydrase I and II isoenzymes inhibition properties, and antibacterial activities of novel tetralonebased 1,4-benzothiazepine derivatives. Journal of Biochemical and Molecular Toxicology, 31(4), e21872.
  • Chen, X. J., Hu, L. D., Yao, K., & Yan, Y. B. (2018). Lanosterol and 25-hydroxycholesterol dissociate crystallin aggregates isolated from cataractous human lens via different mechanisms. Biochemical and Biophysical Research Communications, 506 (4), 868-873.
  • Durmaz, L., Erturk, A., Akyüz, M., Kose, L. P., Uc, E. M., Bingol, Z., Saglamtas, R., Alwasel, S., & Gulcin, I. (2022) Screening of carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α-glycosidase enzyme inhibition effects and antioxidant activity of coumestrol. Molecules, 27, 3091.
  • Ellman, G. L., Courtney, K. D., Andres, J.V., & Featherstone R. M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95.
  • Gocer, H., Akıncıoglu, A., Goksu, S., & Gulcin, I. (2017). Carbonic anhydrase inhibitory properties of phenolic sulfonamides derived from dopamine related compounds. Arabian Journal of Chemistry, 10(3), 398-402.
  • Gocer, H., Akıncıoğlu, A., Oztaskın, N., Göksu, S., & Gulcin, I. (2013). Synthesis, antioxidant and antiacetylcholinesterase activities of sulfonamide derivatives of dopamine related compounds. Archive Der Pharmazie, 346, 783-792.
  • Göçer, H., & Gülçin, I. (2013). Caffeicacidphenethyl ester (CAPE): A potent carbonic anhydrase isoenzymes inhibitor. Internatıonal Journal of Academic Research, 5, 149-154.
  • Göçer, H., Topal, F., Topal, M., Küçük, M., Teke, D., Gulcin, İ., Alwasel, S.H., & Supuran, C. T. (2016). Acetylcholinesterase and carbonic anhydrase isoenzymes I and II inhibition profiles of taxifolin. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(3), 441-447.
  • Gülçin, I., Scozzafava, A., Supuran, CT., Koksal, Z., Turkan, F., Çetinkaya, S., Bingol,Z., Huyut, Z., & Alwasel, S. H. (2016). Rosmarinic acid inhibits some metabolic enzymes including glutathione S-transferase, lactoperoxidase, acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase isoenzymes. Journal of Enzyme Inhibition and Medicinal Chemistry, 31 1698– 1702.
  • Imran, S., Taha, M., Ismail, N. H., Fayyaz, S, Khan., & Choudhary, K. M. (2015). Synthesis, biological evaluation, and docking studies of novel thiourea derivatives of bisindolylmethane as carbonic anhydrase II inhibitor. Bioorganic Chemistry, 62, 83–93.
  • Jeger, R. V. (2013). Mens sana in corpore sano revisited. European Heart Journal, 34(33), 2580-2581.
  • Jiang, Y., Gao, H., & Turdu, G. (2017) Traditional Chinese medicinal herbs as potential AChE inhibitors for anti-Alzheimer’s disease: a review. Bioorganic Chemistry, 75, 50–61.
  • Koca, M., Gulcin, I., Uc, E. M., Bilginer, S., & Aydın, A. S. (2023). Evaluation of antioxidant potentials and acetylcholinesterase inhibitory effects of some new salicylic acid-salicylamide hybrids. Journal of the Iranian Chemical Society, 1-9.
  • Kocyigit, U.M., Budak, Y., Gürdere, M. B., Tekin, Ş., Köprülü, T. K., Ertürk, F. & Ceylan, M. (2017). Synthesis, characterization, anticancer, antimicrobial and carbonic anhydrase inhibition profiles of novel (3aR, 4S, 7R, 7aS)-2-(4-((E)-3-(3-aryl) acryloyl) phenyl)-3a, 4, 7, 7a-tetrahydro-1H-4, 7-methanoisoindole-1, 3 (2H)-dione derivatives. Bioorganic Chemistry, 70, 118-125.
  • Kocyigit, U.M., Budak, Y., Gurdere, M.B., Erturk, F., Yencilek, B., Taslimi, P.; Gulcin, I., & Ceylan, M. (2018) Synthesis of chalcone-imide derivatives and investigation of their anticancer and antimicrobial activities, carbonic anhydrase and acetylcholinesterase enzymes inhibition profiles. Archives of Physiology and Biochemistry, 124, 61–68.
  • Kolesnikova, M. D., Xiong, Q., Lodeiro, S., Hua, L., & Matsuda, S. P. (2006). Lanosterol biosynthesis in plants. Archives of Biochemistry and Biophysics, 447(1), 87-95.
  • Kose, L. P., Gulcin, I., Gören, AC., Namiesnik, J., Martinez-Ayala, A.L., & Gorinstein, S. (2015). LC–MS/MS analysis, antioxidant and anticholinergic properties of galanga (Alpinia officinarum Hance) rhizomes. Industrial Crops and Products, 74, 712–721.
  • Kose, L. P., Gülçin, İ., Özdemir, H., Atasever, A., Alwasel, S. H., & Supuran, C. T. (2016). The effects of some avermectins on bovine carbonic anhydrase enzyme. Journal of enzyme inhibition and medicinal chemistry, 31(5), 773-778.
  • Kucuk, M., & Gulcin, I. (2016) Purification and characterization of carbonic anhydrase enzyme from black sea trout (Salmo trutta Labrax Coruhensis) kidney and inhibition effects of some metal ions on the enzyme activity. Environmental Toxicology and Pharmacology, 44, 134– 139.
  • Li, C., & Wei, C. (2017). DNA-templated silver nanocluster as a label-free fluorescent probe for the highly sensitive and selective detection of mercury ions. Sensors and Actuators B: Chemical, 242, 563-568.
  • Lleo, A., Greenberg, S. M., & Growdon, J. H. (2006). Current pharmacotherapy for Alzheimer's disease. Annual Review of Medicine, 57, 513-533.
  • Mirzazadeh, R., Asgari, M. S., Barzegari, E., Pedrood, K., Mohammadi K. M., Sherafati, M., Laricani, B., Rastegar, H., Rahmani, H., Mahdavi M., Uc, E. M., & Gulcin, I. (2021). New quinoxalin-1, 3, 4-oxadiazole derivatives: Synthesis, characterization, in vitro biological evaluations, and molecular modeling studies. Archiv der Pharmazie, 354(9), 2000471.
  • Moreau, K.L., & King, J.A. (2012). Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends in Molecular Medicine, 18, 273–282.
  • Mutlu, M., Bingol, Z., Uc, E. M., Köksal, E., Goren, A.C., Alwasel, S.H., & Gulcin, I. (2023) Comprehensive metabolite profiling of cinnamon (Cinnamomum zeylanicum) leaf oil using LC-HR/MS, GC/MS, and GC-FID: Determination of antiglaucoma, antioxidant, anticholinergic, and antidiabetic profiles. Life, 13, 136.
  • Nes, W. D. (2000). Sterol methyl transferase: enzymology and inhibition. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1529 (1-3), 63-88.
  • Pascolini, D., & Mariotti, S. P. (2012). Global estimates of visual impairment: 2010. British Journal of Ophthalmology, 96(5), 614-618.
  • Quinn, D. M. (1987). Acetylcholinesterase: Enzyme structure, reaction dynamics, and virtual transition states. Chemical Reviews, 87, 955–979.
  • Rao, C. V., Newmark, H. L., & Reddy, B. S. (2002). Chemopreventive effect of farnesol and lanosterol on colon carcinogenesis. Cancer Detection and Prevention, 26, 419–425.
  • Saeed, A., Al-Rashida, M., Hamayoun, M., Mumtaz, A., & Iqbal, J. (2014). Carbonic anhydrase inhibition by 1-aroyl-3-(4-aminosulfonylphenyl)thioureas, Journal of Enzyme Inhibition and Medicinal Chemistry, 29, 901–905.
  • Schaller, H. (2003). The role of sterols in plant growth and development. Progress in Lipid Research, 42 (3), 163–175.
  • Schumacher, M., Camp, S., Maulet, Y., Newton, M., MacPhee-Quigley, K., Taylor, S. S., & Taylor, P. (1986). Primary structure of Torpedo californica acetylcholinesterase deduced from its cDNA sequence. Nature, 319(6052), 407-409.
  • Shen, X., Zhu, M., Kang, L., Tu, Y., Li, L., Çang, R., Qin, B., Yang, M., & Guan, H. (2018). Lanosterol synthase pathway alleviates lens opacity in age-related cortical cataract. Journal of Ophthalmology, 2018, 1–9.
  • Staubert, C., Krakowsky, R., Bhuiyan, H., Witek, B., Lindahl, A., Broom, O., & Nordström, A. (2016). Increased lanosterol turnover: A metabolic burden for daunorubicin-resistant leukemia cells. Medical oncology, 33, 1-10.
  • Sussman, J. L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L., & Silman, I. (1991). Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science, 253(5022), 872-879.
  • Taslimi, P., Gulcin, I., Ozgeris, B., Goksu, S., Tumer, F., Alwasel, S. H., & Supuran, C. T. (2016). The human carbonic anhydrase isoenzymes I and II (hCA I and II) inhibition effects of trimethoxyindane derivatives. Journal of enzyme inhibition and medicinal chemistry, 31(1), 152-157.
  • Taslimi, P., Sujayev, A., Garibov, E., Nazarov, N., Huyut, Z., Alwasel, S.H., & Gulcın, I. (2017). Synthesis of new cyclic thioureas and evaluation of their metal-chelating activity, acetylcholinesterase, butyrylcholinesterase, and carbonic anhydrase inhibition profiles. Journal of Biochemical and Molecular Toxicology, 31(7) e21897
  • Topal, F., Gulcin, I., Dastan, A., & Guney, M. (2017). Novel eugenol derivatives: Potent acetylcholinesterase and carbonic anhydrase inhibitors. International Journal of Biological Macromolecules, 94, 845–851
  • Tripathi, A., & Srivastava, U. C. (2010). Acetylcholinesterase: a versatile enzyme of nervous system. Annals of Neurosciences, 15(4), 106-111.
  • Turkan, F., Cetin, A., Taslimi, P., Karaman, H.S., & Gulçin, I. (2019). Synthesis, characterization, molecular docking and biological activities of novel pyrazoline derivatives. Archiv der Pharmazie, 352, 1800359.
  • Voser, W., Montavon, M., Günthard, H. H., Jeger, O., & Ruzicka, L. (1950). Zur Kenntnis der Triterpene. Mitteilung. Zur Konstitution des Lanostadienols. Helvetica Chimica Acta, 33(6), 1893-1910
  • Wang, K., Hoshino, M., Uesugi, K., Yagi, N., Pierscionek, B.K., & Andley, U.P. (2022). Oxysterol Compounds in mouse mutant αA- and αB-crystallin lenses can improve the optical properties of the lens. Investigative Ophthalmology and Visual Science, 63
  • Yang, X., Chen, X. J., Yang, Z., Xi, Y. B., Wang, L., Wu, Y., & Rao, Y. (2018). Synthesis, evaluation, and structure–activity relationship study of lanosterol derivatives to reverse mutant-crystallin-induced protein aggregation. Journal of Medicinal Chemistry, 61(19), 8693-8706.
  • Yigit, M., Barut, C. D., Taslimi, P., Yigit, B., Cetinkaya, B., Ozdemir, I., Aygun, M., & Gulcin, I, (2022) Selenourea and thiourea derivatives of chiral and achiral enetetramines: Synthesis, characterization and enzyme inhibitory properties. Bioorganic Chemistry, 120, 105566.
  • Zhao, L., Chen, X., Zhu, J., Xi, Y., Yang, X., Hu, L., Ouyang, H., Patel, S., Jin, X., Lin, D., Wu, F., Flagg, K., Cai, H., Li, G., Cao, G., Lin, Y., Chen, D., Wen, C., Chung, C., Wang, Y., Qiu, A., Yeh, E., Wang, W., Hu, X., Grob, S., Abagyan, R., Su, Z., Tjondro, H.C., Zhao, X., Luo, H., Hou, R., Jefferson, J., Perry, P., Gao, W., Kozak, I., Granet, D., Li, Y., Sun, Xi., Wang, J., Zhang, L., Liu, Y., Yan, Y., & Zhang, K. (2015). Lanosterol reverses protein aggregation in cataracts. Nature, 523, (7562), 607–611.