Potansiyel Korozyon İnhibitörü Olarak Pirimidin Türevlerinin DFT Hesaplaması ile TeorikÇalışmalar

Bu çalışmada pirimidin türevlerinin (1-12) korozyon önleme davranışları teorik kuantumkimyasal hesaplaması ile incelenmiştir. Tüm bileşikler için, moleküler elektrostatik potansiyel haritaları(MEP), En Yüksek İşgal Edilen Moleküler Orbital (HOMO), En Düşük Boş Moleküler Orbital(LUMO), elektronegatiflik (χ), kimyasal potansiyel (µ), global elektrofiliklik indeks (ω) ve kimyasalsertlik (η) gibi teorik hesaplamalarla elde edilen kuantum kimyasal parametreleri B3LYP / 6-31G (d, p)seviyesinde yoğunluk fonksiyonel teorisi (DFT) kullanılarak hesaplandı. Ayrıca, demir yüzeyi ilepirimidin türevi bileşikler arasında transfer edilen elektronların (ΔN) fraksiyonu hesaplandı. Bununlabirlikte, doğrusal olmayan optik (NLO) özellikler de incelenmiştir. Teorik hesaplamalarla elde edilenkuantum kimyasal parametreleri incelendiğinde, bileşik 10’un düşük Δ$E_{gap}$ ($E_{HOMO}$-$E_{LUMO}$), kimyasalsertlik (η) değerleri ve yüksek global elektrofilik indeksi, "ΔN" değerleri ile iyi bir korozyon önleyiciolarak kullanılabileceğini göstermiştir.

Theoretical Studies via DFT Calculation of Pyrimidine Derivatives as Potential Corrosion Inhibitor

In this work, the corrosion prevention behaviors of pyrimidine derivatives (1-12) wereinvestigated by theoretical quantum chemical calculation. Quantum chemical parameters obtained bytheoretical calculations such as the Highest Occupied Molecular Orbital (HOMO), Lowest EmptyMolecular Orbital (LUMO), molecular electrostatic potential maps (MEP), electronegativity (χ),chemical potential (µ), global electrophilicity index (ω), chemical hardness (η) and global softness (σ) for all compounds were studied using density functional theory (DFT) at the B3LYP / 6-31G (d, p) level.Also, the fraction of transferred electrons (ΔN) between the iron surface and the pyrimidine derivativescompounds were calculated. However, nonlinear optical (NLO) properties have also been investigated.When the quantum chemical parameters obtained by theoretical calculations are examined, it has shownthat compound 10 can be used as a good corrosion inhibitor with small Δ$E_{gap}$ ($E_{HOMO}$-$E_{LUMO}$), chemicalhardness (η) values and high global electrophilicity index (ω), "ΔN" values.

___

  • Arora P, Kumar S, Sharma MK, Mathur SP, 2007. Corrosion Inhibition of Aluminium by Capparis decidua in Acidic Media. E-Journal of Chemistry, 4(4): 450 – 456.
  • Becke, AD, 1993. A new mixing of Hartree-Fock and local density-functional theories. The Journal of Chemical Physics. 98: 1372-1377.
  • Brus LE, 1983. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. The Journal of Chemical Physics, 79: 5566–5571.
  • Chattaraj PK, Sarkar U, Roy DR, 2006. Electrophilicity Index. Chemical Reviews, 106: 2065-2091.
  • Dam B, Jamatia R, Gupta A, Pal AK, 2017. Metal-Free Greener Syntheses of Pyrimidine Derivatives Using a Highly Efficient and Reusable Graphite Oxide Carbocatalyst under Solvent-Free Reaction Conditions, ACS Sustainable Chemistry & Engineering, 5: 11459-11469.
  • Davis JR, 2000. Corrosion: Understanding the Basics. ASM International, p.6–9.
  • Dutta A, Saha SK, Adhikari U, Banerjee P, Sukul D, 2017. Effect of substitution on corrosion inhibition properties of 2-(substituted phenyl) benzimidazole derivatives on mild steel in 1 M HCl solution: a combined experimental and theoretical approach. Corrosion Science, 123: 256-266.
  • Ergan E, Akbas E, 2018. Studies on theoretical calculations of corrosion inhibition behavior of pyridazine and pyrazole derivatives. Fresenius Environmental Bulletin, 27(12B): 9549-9556.
  • Frisch MJ, et al., 2010. Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford, CT. Hackerman N, Hurd RM, 1960. In: Proc. 1st Int. Cong. On Metallic Corrosion, London, pp. 166.
  • Heakal FET, Rizk SA, Elkholy AE, 2018. Characterization of newly synthesized pyrimidine derivatives for corrosion inhibition as inferred from computational chemical analysis. Journal of Molecular Structure, 1152: 328-336.
  • Koopmans T, 1993. Ordering of wave functions and eigen-energies to the individual electrons of an atom. Physica, 1: 104-113.
  • Lee C, Yang W, Parr RG, 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B. 37(2): 785-789.
  • Lukovits I, Kalman E, Zucchi F, 2001. Corrosion Inhibitors-Correlation between Electronic Structure and Efficiency. Corrosion, 57: 3-8.
  • Makov G, 1995. Chemical hardness in density functional theory. The Journal of Physical Chemistry, 99: 9337- 9339
  • Parr RG, Yang W, 1989. Density functional theory of atoms and molecules. Oxford University Press, Oxford.
  • Pearson RG, 1963. Hard and soft acids and bases. Journal of the American Chemical Society, 85: 3533-3539.
  • Pearson RG, 1968. Hard and soft acids and bases, HSAB, part 1: Fundamental principles. J Journal of Chemical Education, 45: 581-587.
  • Ramírez-Ramírez JZ, Rubicelia Vargas R, Garza J, Gázquez JL, 2010. Simple Charge-Transfer Model for Metallic Complexes. The Journal of Physical Chemistry A, 114(30): 7945-7951.
  • Ravikumar C, Joe IH, Jayakumar VS, 2008. Charge transfer interactions and nonlinear optical properties of pushpull chromophore benzaldehyde phenylhydrazone: A vibrational approach. Chemical Physics Letters, 460: 552–558.
  • Riggs OL, Every RL, 1962. Study of organic inhibition for hydrochloric acid attack on iron. Corrosion, 18: 262- 269.
  • Roberge PR, 2000. Handbook of Corrosion Engineering. McGraw-Hill, Martinsburg, 1140 p.
  • Sanderson RT, 1954. Electronegativities in inorganic chemistry, Journal of Chemical Education, 31: 2-7.
  • Sanderson RT, 1976. Chemical bond and bond energy. Academic Press, New York.
  • Young DC, 2001. A practical guide for applying techniques to real world problems in Computational Chemistry. John Wiley and Sons Inc. 630p, New York.
  • Zarrouk A, Hammouti B, Dafali A, Bouachrine M, Zarrok H, Boukhris S, Al- Deyab SS, 2014. A theoretical study on the inhibition efficiencies of some quinoxalines as corrosion inhibitors of copper in nitric acid. Journal of Saudi Chemical Society, 18: 450-455.
  • Zhang Z, Li W, Zhang W, Huang X, Ruan L, Wu L, 2018. Experimental, quantum chemical calculations and molecular dynamics (MD) simulation studies of methionine and valine as corrosion inhibitors on carbon steel in phase change materials (PCMs) solution. Journal of Molecular Liquids, 272: 528-538.
Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2146-0574
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: -
Sayıdaki Diğer Makaleler

Elif GÜNGÖR, Resul SEVİNÇEK, Hülya KARA SUBASAT

On Additional Samples of Vipera berus barani Böhme and Joger, 1983 (Reptilia: Ophidia:Viperidae)

Nazan ÜZÜM, Aziz AVCI, Kurtuluş OLGUN, Emin BOZKURT, Abdulmuttalip AKKAYA

CuAu ve Cu3Au Süper Alaşımların Bazı Termal Özelliklerinin Moleküler Dinamik Çalışması

Fatih Ahmet ÇELİK

Bitki Gelişimini Tetikleyen Rizobakterilerin Uygulandığı Buğdayda (Triticum aestivum L.) Kuraklık Stresi ileİlişkili Bazı Genlerin İfade Seviyesinin Ölçülmesi

Mustafa CENGİZ, Behçet İNAL, Harun BEKTAŞ, Mehmet SONKURT, Mohsen MİRZAPOUR, Serdar ALTINTAŞ, Fatih ÇIĞ

Polimer Güneş Hücrelerinde PEDOT:PSS’ye Gümüş Nanoparçacık Katkılamanın VerimeEtkisi

Abuzer YAMAN

Potansiyel Biyolojik Aktif Metil-4,5-dimetoksi-2-(2-(4-metoksifenil)-2-oksoetil)benzoat’ınSentezi

Kadir AKSU

Deprem Kayıt İstasyonu Kurulum Yerinin Çok Kriterli Karar Verme Yaklaşımı ile Belirlenmesi KüçükçekmeceÖrneği

Emre ÇALIŞKAN, Tahsin ÇETİNYOKUŞ, Ayşenur CAN, Fatma ŞAHİN

Pb Katkısının MgO İnce Film Üzerine Etkisinin İncelenmesi

Harun GÜNEY, Ahmet TAŞER, Muhammed Emin GÜLDÜREN

Genetik Algoritma ile Eş Zamanlı Topla-Dağıt Araç Rotalama: İstanbul Anadolu Yakası için BirUygulama

Sinem BOZKURT KESER, İnci SARIÇİÇEK, Açelya TOPRAK, Faruk Emre CİĞER, Mehmet DEMİRÖZ

Hidrotermal Olarak Yaşlandırılmış Hibrit Aramid/Cam/Epoksi Kompozitlerin Su EmmeDavranışlarının İncelenmesi

Ahmet ERKLİĞ, Zeynal Abidin OĞUZ