Pestisit Tayini için Nanopartiküllerle Duyarlılığı Arttırılmış Moleküler Baskılama Temelli Yüzey Plazmon Rezonans Sensörlerin Hazırlanması

Pestisitler yıllardır tarım alanlarında kullanılmaktadır. Ancak bu yaygın kullanım, bilimsel ve endüstriyel

Preparation of Nanoparticle-Amplified Surface Plasmon Resonance Sensors Based on Molecular Imprinting for Pesticide Determination

Pesticides have been utilized in agriculture for decades. However, their widespread use has increasedconcerns due to their known toxicities on long term human health risks in scientific and industrial communities.Thus, the detection of pesticides will have a great prescription due to both improve their toxicity effects overhumans and their management. In this study, poly[ethyleneglycol dimethacrylate-N-methacryloyl-(L)-tryptophanmethyl ester poly(EGDMA-MATrp) nanoparticles for sensitive, selective, fast and realtime detection chlorpyrifoswere firstly prepared and characterized by zeta sizer. Then, a chlorpyrifos-printed SPR nanosensor was prepared andcharacterized by atomic force microscopy (AFM) and contact angle measurements. The thickness measurementsand AFM observations indicated that the nanoparticle thin films were almost monolayer. Chlorpyrifos sensingability of imprinted and nonimprinted nanosensors were investigated from chlorpyrifos solutions within the rangeof 0.015-2.9 nM. Imprinted nanoparticles showed more sensitivity to chlorpyrifos than non-imprinted ones.Langmuir adsorption model was determined as the most suitable model for this affinity system. In order to showthe selectivity of the chlorpyrifos imprinted nanoparticles, competitive adsorption of chlorpyrifos, diazinon andparathion at 2.9 nM concentration was investigated. As a result of, SPR nanosensors have a potential to be used asan alternative method for pesticides analysis due to fast response, easy-to-use properties, precision, selective andreal-time measurement capability.

___

  • Bereli N, Saylan Y, Uzun L, Say R, Denizli A, 2011. L-histidine imprinted supermacroporous cryogels for protein recognition. Seperation Puriffication Technology, 82: 28-35.
  • Chen YC, Brazier JJ, Yan MD, Bargo PR, Prahl SA, 2004. Flourescence-based optical sensor design for molecularly imprinted polymers. Sensors and Actuators B: Chemical, 102: 107-116.
  • Daş YK, Aksoy A, 2016. Pestisitler. Turkiye Klinikleri J Vet Sci Pharmacol Toxicol-Special Topics, 2(2).
  • Gabrieli B, Magali K, Lucila R, Martha BA, Renato Z, Osmar DP, 2016. An effective method for pesticide residues determination in tobacco by GC-MS/MS and UHPLC-MS/MS employing acetonitrile extraction with low-temperature precipitation and d-SPE clean-up. Talanta, 161: 40-47.
  • Gültekin A, Ersöz A, Denizli A, Say R, 2012. Preparation of new molecularly imprinted nanosensor for cholic acid determination. Sensors and Actuators B: Chemical, 162: 153-158.
  • Jamal HM, Ahmad AS, 2016. Organochlorine pesticide residues in human milk and estimated daily intake (EDI) for the infants from eastern region of Saudi Arabia. Environmental Sciences & Ecology, 164: 643-648.
  • Kim N, Park IS, Kim DK, 2007. High-sensitivity detection for model organophosphorus and carbamate pesticide with quartz crystal microbalance-precipitation sensor. Biosensors and Bioelectronics, 22: 1593-1599.
  • Kouzayha A, Rabaa AR, Iskandarani M, Beh D, Budzinski H, Jaber F, 2012. Multiresidue method for determination of 67 pesticides in water samples using solid-phase extraction with centrifugation and gas chromatography-Mass spectrometry. American Journal of Analytical Chemistry, 3: 257-265.
  • Li X, Husson SM, 2006. Adsorption of dansylated amino acids on molecularly imprinted surfaces: a surface plasmon resonance study. Biosensors and Bioelectronics, 22: 336–348.
  • Luzardo OP, Almeida-González M, Ruiz-Suárez N, Zumbado M, Henríquez-Hernández LA, Meilán MJ, Camacho M, Boada LD, 2015. Validated analytical methodology for the simultaneous determination of a wide range of pesticides in human blood using GC–MS/MS and LC–ESI/MS/MS and its application in two poisoning cases. Science and Justice, 55: 307–315.
  • Mauriz E, Calle A, Lechuga LM, Quintana J, Montoya A, Manclús JJ, 2006. Real-time detection of chlorpyrifos at part per trillion levels in ground, surface and drinking water samples by a portable surface plasmon resonance immunosensor. Analytica Chimica Acta, 561: 40-47.
  • Sari E, Üzek R, Duman M, Denizli A, 2016. Fabrication of surface plasmon resonance nanosensor for the selective determination of erythromycin via molecular imprinted nanoparticles. Talanta, 150: 607–614.
  • Saylan Y, Akgönüllü S, Çimen D, Derazshamshir A, Bereli N, Yılmaz F, Denizli A, 2017. Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides. Sensors and Actuators B: Chemical, 241: 446-454.
  • Saylan Y, Üzek R, Uzun L, Denizli A, 2014. Surface imprinting approach for preparing specific adsorbent for IgG separation. Journal of Biomaterials Science, Polymer Edition, 25: 881-894.
  • Sharp DS, Eskenazi B, Harrison R, Callas P, Smith AH, 1986. Delayed health hazard of pesticide exposure. American Jornal of Publich Health, 7: 441-471.
  • Therese Marie SR, Drexel HC, 2017. Green preparation and characterization of tentacle-like silver/copper nanoparticles for catalytic degradation of toxic chlorpyrifos in water. Journal of Environmental Chemical Engineering, 5: 2524-2532.
  • Tuna S, Duman O, Soylu I, Kancı Bozoğlan B, 2014. Spectroscopic investigation of the interactions of carbofuran and amitrol herbicides with human serum albümin. Journal of Luminescence, 151: 22-28.
  • Üzek R, Özkara S, Güngüneş H, Uzun L, Şenel S, 2014. Magnetic nanoparticles for plasmid DNA purification through hydrophobic interaction chromatography. Separation Science and Technology, 49: 2193–2203.
  • Yazgan MS, 1997. Türkiye′de pestisit kirliliği. Türkiye′de Çevre Kirlenmesi Öncelikleri Sempozyumu II, 571-577. Gebze-Kocaeli.
  • Yılmaz F, Saylan Y, Akgönüllü S, Çimen D, Derazshamshir A, Bereli N, Denizli A, 2017. Surface plasmon resonance based nanosensors for detection of triazinic pesticides in agricultural foods. New Pesticides and Soil Sensors, 679-718.
  • Yilmaz E, Majidi D, Özgür E, Denizli A, 2015. Whole cell imprinting based Escherichia coli sensors: A study for SPR and QCM. Sensors and Actuators B, 209: 714–721.
Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2146-0574
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: -
Sayıdaki Diğer Makaleler

TiO2 Ara Katmanlı Si-Tabanlı Heteroeklemin Dielektrik Karakterizasyonu

Abdulkerim KARABULUT

Beton Kaplama Kalınlığına Etki Eden Parametrelerin Parametrik Olarak İncelenmesi

Aydın KICI, Mesut TİĞDEMİR, Şengül Figen KALYONCUOĞLU

Konveks Fonksiyonlarla İlgili Bazı Yeni İntegral Eşitsizlikler

Çetin YILDIZ, Mustafa GÜRBÜZ

Yeni Elma Kültürü: Piraziz Elmasının (Malus communis L.) Antioksidan İçeriğinin ve Antidiyabetik Etkisinin Araştırılması

Sevim Çiftçi YEĞİN, Aytaç GÜDER, Aslı KILIÇ, Habib AYDIN

Inter-ply Hibrit Kompozit Yapılarda Elyaf Diziliş Sıralamasının Mekanik ve Dinamik Özelliklere Etkisi

Muhammet Raci AYDIN, Volkan ACAR, Furkan YAPICI, Kaan YILDIZ, Muhammed Vefa TOPCU, Ömer GÜNDOĞDU

Doğu Anadolu’nun Güneyinden Toplanan Fasulye (Phaseolus vulgaris L.) Gen Kaynaklarının Çiçek ve Tohum Özelliklerinin Belirlenmesi

Mustafa ÇİRKA, Vahdettin ÇİFTÇİ

Oxidative DNA Damage Protective Ability of Punica granatum

Bircan ÇEKEN TOPTANCI

Meyan Kökü (Glycyrrhiza glabra) Ekstraktı ve Sıvıcam Karışımı ile Boyanan Bazı Odun Türlerinin Yanma Özellikleri

Mehmet YENİOCAK, Osman GÖKTAŞ, Ertan ÖZEN, Mehmet ÇOLAK, Mehmet UĞURLU

Farklı Uç Alma Dönemleri ve Farklı Dozlarda Azot Uygulamalarının Merlot (Vitis vinifera L.) Üzüm Çeşidinde Verim ve Kalite Üzerine Etkileri

İlknur KORKUTAL, Elmas BAHAR, Gülderen KAYGUSUZ

Ticari Olarak Satın Alınan Nar Suyunun Antibakteriyal ve Bazı Antibiyotiklerle Sinerjistik Etkisi

Merve ARI, Nurcan ERBİL