Maricite NaFePO4 Katot Malzemesinin Üretimi ve Elektrokimyasal Özellikleri

Enerji üretimi ve depolama teknolojilerinin kullanımı son yıllarda büyük bir önem kazanmıştır. Sodyum iyon piller (Na-iyon) alanındaki gelişmelere bakıldığında düşük maliyetlerinden dolayı lityum iyon (Li-iyon) pillere alternatif olarak yakın gelecekte ümit vadetmektedir. Na-iyon pilleri bu kadar cazip hale getiren başlıca nedenler lityum ile benzer kimyasal özelliklere sahip olması ve üretim maliyetlerinin daha düşük olmasıdır. Bu çalışmada NaFePO4 katot malzemesinin üretiminde iki kademeli ısıl işlem ile katı hal reaksiyon yöntemi uygulanmıştır. Üretilen malzemelerin fiziksel karekterizasyonları için XRD, SEM, FTIR kullanılmış, manyetik özellikleri ise χ-T analizleri ile incelenmiştir. Pillerin performansını ve elektrokimyasal özelliklerini araştırmak için üretilen katot malzemeleri CR2032 düğme pil haline getirilerek döngüsel voltametri (CV) ve kapasite ölçümleri yapılmıştır. NaFePO4 katot malzemesinin XRD analizlerinde safsızlık fazları gözlenmemiştir. Pil haline getirilmiş katot materyallerinin 1,5-4,0 V aralığında 100 döngülük kapasite değeri ölçülmüş, ilk deşarj kapasitesinin 26,29 mAh g-1 olduğu ve 100. döngü sonunda kapasite değerinin ilk döngüye oranla %10.99 arttığı gözlemlenmiştir.

Production and Electrochemical Properties of Maricite NaFePO4 Cathode Material

The use of energy generation and storage technologies has gained great importance in recent years. Considering the developments in the field of sodium ion batteries (Na-ion), because of their low cost, these materials will be an alternative to lithium ion (Li-ion) batteries in the near future. The important reasons that make Na-ion batteries so attractive are that they have similar chemical properties with lithium and their production costs are lower. In this study, NaFePO4 cathode material was produced by applying two-steps heat treatments with solid state reaction method. For the structural characterization of produced materials XRD, SEM, FTIR were used and their magnetic properties were investigated by χ-T analyzes. Cyclic voltammetry (CV) and capacity measurements were made to investigate the battery performance and electrochemical properties of cathode materials. There was not observed impurity phases in XRD analysis in the structure of the NaFePO4 cathode material. The capacity of cathode materials has been measured for 100 cycles in the 1.5-4.0 V range. It was observed that the initial discharge capacity of this battery was 26.29 mAh g-1 and the capacity value increased %10.99 at the end of the 100th cycle.

___

  • Altundağ S, Altin S, Yolun A, Canbay CA, 2020. Na0.67Mn0.5Fe0.5O2 Katot Malzemelerinin Üretimi, Yapısal ve Elektrokimyasal Özelliklerinin İncelenmesi. Fırat Üniversitesi Fen Bilimleri Dergisi. 32(2): 21-30.
  • Avdeev M, Mohamed Z, Ling DC, Lu J, Tamaru M, Yamada A, Barpanda P, 2013. Magnetic Structures of NaFePO4 Maricite and Triphylite Polymorphs for Sodium-Ion Batteries. Inorganic Chemistry, 52(15): 8685-8693.
  • Ellis B L, Makahnouk WRM, Makimura Y, Toghill K, Nazar LF, 2007. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nature Materials, 6: 749-753.
  • Fernandez-Ropero AJ, Saurel D, Acebedo B, Rojo T, Casas-Cabanas M, 2014. Electrochemical characterization of NaFePO4 as positive electrode in aqueous sodium-ion batteries. Journal of Power Sources, 291: 40-45 .
  • He M, Kravchyk K, Walter M, Kovalenko M. V, 2014. Monodisperse Antimony Nanocrystals for High-Rate Li-ion and Na- ion Battery Anodes: Nano versus Bulk. Nano Letters, 14: 1255−1262.
  • Heubner C, Heiden S, Schneider M, Michaelis A, 2017. Electrochimica Acta In-situ preparation and electrochemical characterization of submicron sized NaFePO4 cathode material for sodium-ion batteries. Electrochimica Acta, 233:78–84.
  • Hwang J, Matsumoto K, Orikasa Y, Katayama M, InadaY, NohiraT, Hagiwara R, 2018. Crystalline maricite NaFePO4 as a positive electrode material for sodium secondary batteries operating at intermediate temperature. Journal of Power Sources, 377: 80–86.
  • Hwang J Y, Myung S T, Sun Y K, 2017. Sodium-ion batteries: Present and Future. International Chemical Society Reviews, 46(12): 3529–3614.
  • Jana S, Lingannan G, Ishtiyak M, Panigrahi G, Sonachalam A, Prakash J, 2020. Syntheses , crystal structures , optical , Raman spectroscopy, and magnetic properties of two polymorphs of NaMnPO4. Materials Research Bulletin, 126: 110835
  • Jin T, Li H, Zhu K, Wang P. F, Liu P, Jiao L, 2020. Polyanion-type cathode materials for sodium-ion batteries. Chemical Society Reviews, 49(8): 2342–2377.
  • Kapaev R R, Chekannikov A A, Novikova S A, Kulova T L, Skundin M, Yaroslavtsev A B, 2017. Activation of NaFePO4 with maricite structure for application as a cathode material in sodium-ion batteries. Italian Oral Surgery, 27(3): 263–264.
  • Kim J, Seo D, Kim H, Park I, Yoo J, 2015. Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries, Energy Environmental Science, 8: 540-545.
  • Kosova N V, Podugolnikov V R, Devyatkina E T, Slobodyuk A B, 2014. Structure and electrochemistry of NaFePO4 and Na2FePO4F cathode materials prepared via mechanochemical route. Materials Research Bulletin, 60: 849–857.
  • Li C, Miao X, Chu W, Wu P, Tong D. G, 2015. Hollow amorphous NaFePO4 nanospheres as a high-capacity and high-rate cathode for sodium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 3: 8265–8271.
  • Liu Y, Zhang N, Wang F, Liu X, Jiao L, Fan L, 2018. Approaching the Downsizing Limit of Maricite NaFePO4 toward High-Performance Cathode for Sodium-Ion Batteries. Advanced Functional Materials, 28(30): 1801917
  • Masias A, Marcicki J, Paxton W A, 2021. Opportunities and Challenges of Lithium Ion Batteries in Automotive Applications. ACS Energy Letters, 6(2): 621-630.
  • Massot L, Chamelot P, Cassayre L, Taxil P, 2009. Electrochemical study of the Eu(III)/Eu(II) system in molten fluoride media. Electrochemica Acta, 54(26): 6361-6366.
  • Mukherjee S, Bin Mujib S, Soares D, Singh G, 2019. Electrode Materials for High-Performance Sodium-Ion Batteries. Materials, 12(12): 1952.
  • Murugesan C, Lochab S, Senthilkumar B, Barpanda P, 2018. Earth-Abundant Alkali Iron Phosphates ( AFePO4 ) as Efficient Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Solution, ChemCatChem 10: 1122 – 1127.
  • Oh S M, Myung S T, Hassoun J, Scrosati B, Sun Y K, 2012. Reversible NaFePO4 electrode for sodium secondary batteries. Electrochemistry Communications, 22(1): 149–152.
  • Priyanka V, Subadevi R, Sivakumar M, 2017. Synthesis And Structural Analysis of NaFePO4 Nanocomposite For Sodium Ion Batteries. International Research Journal of Engineering and Technology, 4(9): 3–6.
  • Rahman M, Sultana I, Mateti S, Liu J, Sharma N, Chen Y, 2017. Maricite NaFePO4/C/graphene: a novel hybrid cathode for sodium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 5: 16616–16621.
  • Tang W, Song X, Du Y, Peng C, Lin M, Xi S, Tian B, Zheng J, Wu Y, Pan F, Loh K. P, 2016. High-performance NaFePO4 formed by aqueous ion-exchange and its mechanism for advanced sodium ion batteries. Journal of Materials Chemistry A, 4(13): 4882–4892.
  • Trottier J, Hovington P, Brochu F, Rodrigues I, Zaghib K, Mauger A, Julien C. M, 2011. NaFePO4 Olivine as Electrode Materials for Electrochemical Cells. ECS Transactions, 35(34), 123–128.
  • Wang D, Wu Y, Lv J, Wang R, Xu S, 2019. Carbon encapsulated maricite NaFePO4 nanoparticles as cathode material for sodium-ion batteries. Colloids and Surfaces A, 583: 123957.
  • Wang J, Sun X, 2015. Olivine LiFePO4: The remaining challenges for future energy storage. International Energy and Environmental Science 8(4): 1110–1138.
  • Zhao L, Zhou D, Huang W, Kang X, Shi Q, Deng Z, Yan X, Yu Y, 2017. Electrochemical performances of maricite NaFePO4/C as cathode material for sodium-ion and lithium-ion batteries. International Journal of Electrochemical Science, 12(4): 3153–3165.
Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2146-0574
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: -
Sayıdaki Diğer Makaleler

Bitki Patojeni Fungusların Tespitinde Polimeraz Zincir Reaksiyonu’na Dayalı Bazı Moleküler Teknikler

Harun BAYRAKTAR, Göksel ÖZER, Gülsüm PALACIOĞLU

CuAu ve $Cu_3Au$ Süper Alaşımların Bazı Termal Özelliklerinin Moleküler Dinamik Çalışması

Fatih Ahmet ÇELİK

Farklı Yem İşleme Teknolojilerinin Arpanın (Hordeum vulgare L.) Kimyasal, Mikrobiyolojik veMikroskopik Özellikleri Üzerine Etkileri

Hasan Ersin ŞAMLI, Fisun KOÇ, Levend COŞKUNTUNA

Baklanın (Vicia faba L.) Besinsel İçeriği ve Tıbbi Açıdan Yararları

Yusuf Murat KARDEŞ, Melike KÖSE

Emrah KUŞ

Pb Katkısının MgO İnce Film Üzerine Etkisinin İncelenmesi

Harun GÜNEY, Ahmet TAŞER, Muhammed Emin GÜLDÜREN

Investigating the Effect of Yttrium Oxide Nanoparticle in U87MG Glioma and PC3 ProstateCancer: Molecular Approaches

Erdal SÖNMEZ, Ayşenur YAZICI, Hasan TÜRKEZ, Elanur AYDIN KARATAŞ, Kübra Nur BAYINDIRLI, Özlem ÖZDEMİR TOZLU, Süleyman KERLİ

New Compound of Pyridine-4-Boronic Acid Cation and $Pt{left(CNright)}_4$ Anion Salt: Synthesis,Structural Properties, Hirshfeld Surface Analysis and Density Functional Theory Calculations

Resul SEVİNCEK, Hülya KARA SUBASAT, Elif GÜNGÖR

Organik Ürün Tüketim Alışkanlığına Sınava Hazırlık Merkezlerindeki Öğrencilerin Bakış Açısı

Hakan İNCİ, Hilal YILMAZ, Şenol ÇELİK, Meltem TUFAN, Tugay AYAŞAN, Serdar ÖZDEMİRCİ

Deprem Kayıt İstasyonu Kurulum Yerinin Çok Kriterli Karar Verme Yaklaşımı ile Belirlenmesi KüçükçekmeceÖrneği

Emre ÇALIŞKAN, Tahsin ÇETİNYOKUŞ, Ayşenur CAN, Fatma ŞAHİN