Krom’un Deinococcus radiodurans ve Rekombinantlarına Etkisi

Ağır metaller düşük konsantrasyonlarda bulunmaları durumunda bile canlı organizmalar için toksik etkiye sahip olabilirler. Canlı metabolizmasında önemli bir yeri olan krom, genellikle Cr (III) formunda bulunmaktadır. Cr (VI) ise endüstriyel faaliyetler sonucunda ortaya çıkmaktadır. Son yıllarda ciddi çevre problemlerine neden olan ağır metallerin ve ksenobiyotiklerin detoksifikasyonuyla ilgili yoğun araştırmalar yapılmaktadır. Özellikle bu maddeleri daha zararsız bileşiklere çevirmek için gerekli olan genetik bilgiye sahip bakteri türlerinin alternatif kullanım alanı bulabileceği anlaşılmıştır. Bu amaçla çalışmamızda, yabanıl Deinococcus radiodrans ile Vitreoscilla hemoglobin (vgb) geni klonlanmış rekombinantı ve kontrol olarak da vgb¯ rekombinant suşu kullanılmıştır. Bu sayede D. radiodurans ve rekombinantlarının üreme potansiyelleri üzerine Cr‟un etkisi araştırılarak bakterilerin metal uygulaması öncesi ve sonrası morfolojik değişimleri SEM fotoğrafları ile saptanmıştır. Bunlara ek olarak bakteriye daha fazla oksijenli ortam sağlayan vgb geninin, bakterinin üreme yeteneğine yapacağı katkı araştırılmıştır. Çalışmamızın sonunda, bakterilerin üreme potansiyelleri üzerinde vgb geninin bakteriye daha fazla oksijenli ortam yaratıp daha fazla üremesini sağlayarak meydana getirdiği olumlu etkiler gözlenmiştir.

The Effect of Chrome on Deinococcus radiodurans and Recombinants

Heavy metals can have toxic effects on living organisms even in low concentrations. Having an important place in the living metabolism, the chromium is generally in Cr (III) form. As per the Cr (VI), it emerges as a result of industrial activities. In recent years, intensive research studies have been conducted about heavy metals causing serious environmental problems and detoxification of xenobiotics. It is appeared that the bacteria species, which are equipped with genetic information necessary for breaking down particularly these substances into less harmful compounds, can be an alternative area of use. In our study, we used cloned recombinant Vitreoscilla hemoglobin (vgb) gene with wild Deinococcus radiodurans and vgb- recombinant strain as control. By this means, the effect of Cr on the reproductive potential of D. radiodurans and its recombinants were examined. The morphological changes of the bacteria before and after the metal application were detected through SEM photos. In addition to these, the contribution of vgb gene, which provides a more aerobic (oxygenated) environment for the bacteria, was examined. As the conclusion of our study, positive effects of vgb genes on the reproductive potentials of the bacteria were observed, which ensured a higher reproduction rate through providing a more oxygenated environment for the bacteria.

___

  • Alloway BJ, 1995. Heavy Metals in Soils. No: XIV, 368, Springer Netherlands. Chapman & Hall, London.
  • Anderson AW, Nordan HC, Cain RF, Parrish G, Duggan D, 1956. Studies on a radio-resistant microccous. Isolation, morphology, cultural characteristics, and resistance to gamma radiation. Food Technology, 10: 575–577.
  • Arsene F, Tomoyasu T, Bukau B, 2000. The heat shock response of Escherichia coli. International Food Microbiology, 55:3-9.
  • Battista JR, 1997. Against all odds: the survival strategies of Deinococcus radiodurans. Annual Review of Microbiology, 51: 203–224.
  • Bozanta E, Ökmen G, 2011. Biyosorpsiyon ve Mikroorganizmalar. Türk Bilimsel Derlemeler Dergisi, 4 (2):69- 77.
  • Brady D, Duncan JR, 1994. Bioaccumulation of Metal Cations by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 41:149-154.
  • Brochiero E, Bonaly J, Mestre JC, 1984. Toxic action of Hexavalent Chromium on Euglena Gracilis Strain Z Grown Under Heterotrophic Conditions. Archives of Environmental Contamination and Toxicology, 13: 603-608.
  • Bruins MR, Kapil S, Oehme, FW, 2000. Microbial resistance to metals in the enviroment. Ecotoxicology and Enviromental Safety, 45: 198-207.
  • Carlos C, Jesus CG, Silvia D, Felix GC, Herminia LT, Juan Carlos TG, Rafael MS, 2001. Interactions of chromium with microorganisms and plants. FEMS Microbiology Reviews, 25: 335-347.
  • Ceribasi IH, Yetis U, 2001. Biosorption of Ni (II) and Pb (II) by Phanerochaete chrysosporium from a binary metal system – kinetics. Water SA, 27: 15–20.
  • Cervantes C, Garcia J, Devars S, Corona F, Tavera H, Guzman J, Sanchez R, 2001. Interactions of chromium with microorganisms and plants. FEMS Microbiology, 25: 335-347.
  • Corradi MG, Gorbi G, Ricci A, Torelli A. Bassi,AM, 1995. Chromium induced sexual reproduction gives rise to a Cr-tolerant progeny in Scenedesmus acutus. Ecotoxicology and Environmental Safety, 32: 12-18.
  • Chung JW, Webster DA, Pagilla KR, Stark BC, 2001. Chromosomal integration of the Vitreoscilla hemoglobin gene in Burkholderia and Pseudomonas for the purpose of producing stable engineered strains with enhanced bioremediating ability. Journal of Industrial Microbiology and Biotechnology, 27:27-33.
  • Cronan JE, 2002. Phospholipid modifications in bacteria. Current Opinion in Microbiology, 5:02-205.
  • Çabuk A, Akar T, Tunali S, Tabak O, 2006. Biosorption Characteristics of Bacillus sp. ATS-2 Immobilized in Silica Gel for Removal of Pb(II). Journal of Hazardous Materials, 136: 317-323.
  • Duffus JH, 1980. Environmental toxicology. Wiley, New York. 8. European Commission DG ENV. E3 Project ENV.E.3/ETU/2000/0058, “Heavy Metals in Waste” February 2002, Danimarka.
  • Harsojo Kitayama S, Matsuyama A, 1981. Genome multiplicity and radiation resistance in Micrococcus radiodurans. Journal of Biochemistry, 90: 877–880.
  • Kahraman S, Asma D, Erdemoğlu S, Yesilada O, 2005. Biosorption of Copper(II) by Live and Dried Biomass of the White Rot Fungi Phanerochaete chrysosporiumand Funalia trogii. Engineering in Life Sciences, 5 (1): 72-77.
  • Kahvecioğlu Ö, Kartal G, Güven A, Timur S, 2009. Metallerin çevresel etkileri. Metalurji Dergisi, 136:47-53.
  • Katz SA, Salem H, 1993. The Toxicology of Chromium with Respect to its Chemical speciation: a review. Journal of Applied Toxicology, 13, 217-224.
  • Kitayama S, 1982. Adaptive repair of cross-links in DNA of Micrococcus radiodurans. Biochimica Biophysica Acta, 697: 381–384.
  • Kurt AG, Aytan E, Ozer U, Ates B, Geckil H, 2009. Production of L-DOPA and dopamine in recombinant bearing the Vitreoscilla hemoglobin gene. Biotechnology Journal, 4(7):1077-88.
  • Khosla C, Bailey JE, 1988. Heterologous expression of a bacterial hemoglobin improves the growth properties of recombinant E. coli. Nature, 331:633–635.
  • Knivett VA, Cullen J, Jackson MJ, 1965. Odd-numbered fatty acids in Micrococcus radiodurans. Biochemical Journal, 96: 2–3.
  • Lancy P, Murray RG, 1978. The envelope of Micrococcus radiodurans: isolation, purification, and preliminary analysis of the wall layers. Canadian Journal of Microbiology, 24:162–176.
  • Levis AG, ve Bianchi V, 1982. Mutagenic and cytogenic effects of chromium compounds: Biological and Environmental Aspects of Chromium. Elsevier,171-208.
  • Liu SC, Webster DA, Stark BC, 1995. Cloning and expression of the Vitreoscilla Hemoglobine gene in Pseudomonas: Effect on cell growth. Applied Microbiology and Biotecnology, 44:3, 419-424.
  • Mertz W, 1987. Trace Elements in Human And Animal Nutrition-15th Edition, Volume 1. Academic Pres, London.
  • Mohan D, Pittman CU, 2006. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardous Materials, 137: 762-811.
  • Moseley BE, Copland HJ, 1975. Isolation and properties of a recombination deficient mutant of Micrococcus radiodurans. Journal of Bacteriology, 121:422–428.
  • Murray RG, 1986. Family II. Deinococcaceae, 1035–1043. In P. H. A.
  • Muter O, Lubinya I, Miller D, Grigorjeva L,Ventiya E, Rapoport A, 2001. Cr(VI) sorption by inact and Dehyrated Candida utulis cells in the presence of the other metals. Process Biochemistry, 38: 123-131.
  • Neidhardt FC and VanBogelen RA, 2000. Proteomic analysis of bacterial stress response, in Bacterial Stress Responses. American Society for Microbiology Press, 445-452.
  • Nies DH, 1999. Microbial heavy-metal resistance. Applied Microbiology and Biotechnology, 51: 730-750.
  • Qazi GN, Sharma NR, Parshad, 1993. Role of Dissolved-Oxigen as a Regulator for the Direct Oxidation of Glucose by Erwinia herbicola and Gluconobacter oxidans. Journal of Fermentation and Bioengineering, 76:4, 336-339.
  • Özbey E, 2014. Deinococcus radiodurans ve Rekombinantlarının UV-C, Ağır Metal Dirençliliği ve Biyosorpsiyon Yeteneği, İnönü Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi (Basılmış).
  • Snow ET, 1994. Effects of chromium on DNA replication in vitro. Environmental Health Perspectives, 3: 41-44.
  • Stark BC, Dikshit KL, Pagilla KR, 2011. Recent advances in understanding the structure, function, and biotechnological usefulness of the hemoglobin from the bacterium Vitreoscilla. Biotechnology Letters, 33 (9): 1705-1714.
  • Şanlı Y, 2002. Veteriner Klinik Toksikoloji, Medipres, Güngör Matbaacılık, 2. Baskı, Ankara.
  • Türkman A, Aslan Ş, Ege İ, 2001. Doğal zeolitlerle atıksulardan kurşun giderimi. Dokuz Eylül Üniv., Mühendislik Fakültesi, Fen ve Mühendislik Dergisi, 3 (2), 13-19.
  • Thornley MJ, Horne RW, Glauert AM, 1965. The fine structure of Micrococcus radiodurans. Archieves of Mikrobiology, 51: 267–289.
  • Travieso L, Canizarez RO, Borja R, Benitez F, Dominguez AR, Dupeyron R, Valiente V, 1999. Heavy metal removal by microalgae. Bulletin of Environmental Contamination and Toxicology, 62: 144-151.
  • Wakabayashi S, Matsubara H, Webster DA, 1986. Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. Nature, 322(6078):481-483.
  • Woese CR, Weisburg WG, Paster BJ, Hahn CM, Tanner RS, Krieg NR, Koops HP, Harms H, Stackebrandt E, 1984. The Phylogeny of Purple Bacteria: the Beta-Subdivision. Systematic and Applied Microbiology, 5: 327-336.
  • Wong PT ve Trevors JT, 1988. Chromium toxicity to algae and bacteria. Chromium in the Natural and Human Environments, 305-315. Wiley, (New York).
  • Work E, 1964. Amino acids of walls of Micrococcus radiodurans. Nature, 201:1107–1109.
  • Work E, Griffiths H, 1968. Morphology and chemistry of cell walls of Micrococcus radiodurans. Journal of Bacteriology, 95: 641–657.
  • Yavuz O, Sarıgül N, 2016. Toprak ve sucul ortamlardaki ağır metal kirliliği ve ağır metal dirençli mikroorganizmalar. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7 (1), 44-51.
  • Yousef AE, Courtney PD, 2003. Basics of stres adaptation and implications in newgeneration foods. Microbial Adaptation and Food Safety. Pres, 1–25 (New York).
  • Zhang L, Yang Q, Tang Y, 2007. Knockout of crtB or crtI gene blocks the carotenoid biosynthetic pathway in Deinococcus radiodurans R1 and influences its resistance to oxidative DNAdamagin agents due to change of free radicals scavenging ability. Archives of Microbiology, 188: 411–419.