Giyilebilir Hareket Sensörü Kullanılarak Dinamik Model ile Üst Uzuv Eklemleri Üzerine Etkiyen Kuvvetlerin ve Torkların Belirlenmesi

Bu çalışmada günlük hayatta en sık kullanılan vücut bölümlerinin başında gelen üst uzuvlara ait omuz ve dirsek eklemlerindeki kuvvet ve tork değerlerinin belirlenmesi amaçlanmıştır. Denekten dik konumda iken masada duran belirli bir yükü alması kendisine yaklaştırması ve geri bırakması istenmiştir. Deneğin bu görevi yerine getirirken gerçekleştirdiği hareketler esnasında omuz ve dirseğinde meydana gelen eklem kuvvet ve torklarının belirlenebilmesi için Newton-Euler metodu kullanılarak dinamik bir model oluşturulmuştur. Eklemlere ait konum verilerinin ölçülmesinde giyilebilir hareket sensörleri kullanılmıştır. Bu sensörlerden alınan hareket verileri ile oluşturulan dinamik model kullanılarak eklemlerdeki tork ve bağ kuvveti değerleri hesaplanmıştır. Elde edilen hesaplama sonuçları karşılaştırmalı olarak değerlendirilerek eklem kuvvet ve torklarının hangi durumlarda arttığı ve ne gibi tedbirlerle azaltılabileceği ortaya konulmuştur.

Determination of the Forces and Torques Acting on the Upper Limb Joints with Dynamic Model Using Wearable Motion Sensors

In this study, it was aimed to determine the forces and torques acting on the shoulder and elbow joints of the upper limbs, which are the most commonly used body parts in daily life. The subject was asked to take a certain load on the table while standing upright, bring him closer to himself and leave it back. A dynamic model was created using the Newton-Euler method to determine the joint force and torque occurring in the shoulder and elbow during the movements performed by the selected subject while performing this task. Wearable motion sensors were used to measure the location data of the joints. The torque and link force values in the joints were calculated using the dynamic model created with the motion data received from these sensors. The calculation results obtained were evaluated comparatively and it was revealed in which cases the forces and torques acting on the joints increased and what measures could be reduced.

___

  • Chandler, R.F., Clauser, C.E., McConville, J.T., Reynolds, H.M., Young, J.W., 1975. Investigation of inertial properties of the human body. Air Force Aerospace Medical Research Lab Wright-Patterson AFB OH., No. AMRL-TR-74-137
  • Cheng, 1996 Biomechanical study of upper limb activities of daily living. PhD Thesis, University of Strathclyde, Glasgow,Scotland.
  • El-Gohary, M., McNames, J., 2012. Shoulder and elbow joint angle tracking with inertial sensors. IEEE Transactions on Biomedical Engineering, 59(9): 2635-41.
  • Elmenreich W., 2002 Sensor Fusion in Time-Triggered Systems, Dissertation, Vienna University of Technology, Austria,.
  • Gates, D.H., Walters, L.S., Cowley, J., Wilken, J.M., Resnik, L., 2016. Range of Motion Requirements for Upper-Limb Activities of Daily Living. American Journal of Occupational Therapy, 70(1): 7001350010p1
  • Hanavan Jr, E.P., 1964. A mathematical model of the human body. Air Force Aerospace Medical Research Lab Wright-Patterson AFB OH., No. AFIT-GA-PHYS-64-3
  • Harari, Y., Bechar, A., Riemer, R., 2020. Workers’ biomechanical loads and kinematics during multiple-task manual material handling. Appl. Ergon. 83(0), 102985.
  • Khalili, D., Zomlefer, M., 1988. An intelligent robotic system for rehabilitation of joints and estimation of body segment parameters. IEEE Transactions on Biomedical Engineering, 35(2): 138-46.
  • Kostyukov, A. I., Tomiak, T., 2018. The force generation in a two-joint arm model: Analysis of the joint torques in the working space. Frontiers in Neurorobotics, 12(0): 77
  • Krishnan, R.H., Devanandh, V., Brahma, A.K., Pugazhenthi, S., 2016. Estimation of mass moment of inertia of human body, when bending forward, for the design of a self-transfer robotic facility. Journal of Engineering Science and Technology, 11(5): 166-76.
  • Lemay, M. A., Crago, P.E., 1996. A dynamic model for simulating movements of the elbow, forearm, and wrist. Journal of Biomechanics, 29(10): 1319-30.
  • Magermans, D.J., Chadwick, E.K.J., Veeger, H.E.J., Van der Helm F.C.T., 2005. Requirements for upper extremity motions during activities of daily living. Clinical Biomechanics, 20(6): 591-99.
  • Murray, I.A., Johnson, G.R., 2004. A study of the external forces and moments at the shoulder and elbow while performing everyday tasks. Clinical Biomechanics, 19(6): 586-94.
  • Özkan, O., Yeşildirek, A., 2019. Sensör Füzyonu Algoritmaları ile Açısal Konum Referans Sistemi Tasarımı Bayburt Üniversitesi Fen Bilimleri Dergisi 2(1), 84-94.
  • Peppoloni, L., Filippeschi, A., Ruffaldi, E., Avizzano, C.A., 2013. A novel 7 degrees of freedom model for upper limb kinematic reconstruction based on wearable sensors. In 2013 IEEE 11th international symposium on intelligent systems and informatics (SISY), 26-28 September, 2013, pp: 105-110
  • Rab, G., Petuskey, K., Bagley, A., 2002. A method for determination of upper extremity kinematics. Gait & Posture, 15(2): 113-19.
  • Raikova, R., 1992. A general-approach for modeling and mathematical investigation of the human upper limb. Journal of Biomechanics, 25(8): 857-67.
  • Riener, R., Straube, A., 1997. Inverse dynamics as a tool for motion analysis: Arm tracking movements in cerebellar patients. Journal of Neuroscience Methods, 72(1): 87-96.
  • Schmidt, R., Disselhorst-Klug, C., Silny, J., Rau, G., 1999. A marker-based measurement procedure for unconstrained wrist and elbow motions. Journal of biomechanics, 32(6): 615-621.
  • Thomas, N., John, M.S., Kumar, V.S., 2017. Development of an assistive robot for the torque analysis of upper extremity joints. Development, 40(3): 432-439.
  • Winter, D. A., 2009 Biomechanics and Motor Control of Human Movement, No: 4th ed. pp 82-100 Waterloo, Ontario, Canada
  • Winslow, V. L., 2015 Classic Human Anatomy in Motion: The Artist's Guide to the Dynamics of Figure Drawing, No: 1st ed. pp 18-20 Newyork, America
  • Zhou, H., Hu, H., Harris, N. D., ve Hammerton, J, 2006. Applications of wearable inertial sensors in estimation of upper limb movements. Biomedical Signal Processing and Control, 1(1), 22-32.