Farklı Azot Dozu Uygulamalarının Patates (Solanum tuberosum L.) Yumrusunun Mineral Madde İçeriğine Etkisi

Patates insan beslenmesinde kullanılan temel gıda ürünlerinden biridir ve patates yetiştiriciliğinde yumru kalitesini sağlamak için azot gübrelemesinin yapılış zamanı ve miktarı oldukça önemlidir. Bu araştırma, farklı azot dozlarının patateste yumru mineral madde içeriğine etkisini belirlemek amacıyla Niğde Ömer Halisdemir Üniversitesi Tarım Bilimleri ve Teknolojileri Fakültesi Araştırma ve Uygulama alanında yürütülmüştür. Materyal olarak Agria patates çeşidi ve azot kaynağı olarak üre (%46 N) gübresi kullanılmıştır. Çalışmada 6 farklı azot dozu (0, 10, 20, 30, 40, 50 kg/da) uygulanmıştır. Denemeler, Tesadüf Blokları Deneme Desenine göre 4 tekrarlamalı olarak kurulmuştur. İncelenen özelliklere ilişkin verilerle yapılan varyans analiz sonuçlarına göre, azot dozlarının yumru azot, potasyum, magnezyum, demir, çinko, mangan ve bakır içeriklerine etkisi önemli bulunmuştur. Ancak yumru fosfor, kalsiyum ve kükürt içerikleri üzerine etkisi olmamıştır. Yumrudaki en yüksek azot miktarı 50 kg/da, potasyum, magnezyum ve mangan miktarı 10 kg/da demir miktarı 20 kg/da, çinko miktarı 0 kg/da bakır miktarı 20 kg/da uygulamasından elde edilmiştir. Azot miktarının 0 kg/da’dan 50 kg/da’ a kadar artmasıyla yumrudaki azot içeriğinin arttığı bulunmuştur. Bununla beraber bu artışın bazı elementlerin miktarını belli bir seviyeye kadar arttırdığı ancak diğer mineral maddelerde ise herhangi bir etki göstermediği tespit edilmiştir.

Effect of Different Nitrogen Dose Applications on Mineral Matter Content of Potato (Solanum tuberosum L.) Tuber

Potato is one of the essential food products used in human nutrition, and the time and amount of nitrogen fertilization are very important to ensure tuber quality in potato cultivation. This research was carried out in Niğde Ömer Halisdemir University Faculty of Agricultural Sciences and Technologies Research and Application area in order to determine the effect of different nitrogen doses on the tuber mineral content of potatoes. Agria potato variety was used as material and urea fertilizer (46 % N) was used as nitrogen source. In the study, 6 different nitrogen doses (0, 10, 20, 30, 40, 50 kg/da) were applied. Plots were laid out in a randomized complete block design with four replicates. According to the results of the analysis of variance made with the data on the properties examined, the effect of nitrogen doses on the tuber nitrogen, potassium, magnesium, iron, zinc, manganese and copper contents was found to be significant. However, it had no effect on phosphorus, calcium and sulfur. The highest nitrogen content in the tuber was obtained from 50 kg/da, potassium, magnesium and manganese content 10 kg/da, iron content 20 kg/da, zinc content 0 kg/da and copper content 20 kg/da. It was found that the nitrogen content in the tuber increased with a rise in the amount of nitrogen from 0 kg/da to 50 kg/da. However, it was determined that raise increased the amount of some elements up to a certain level but did not show any effect on other mineral substances.

___

  • Abd El-Latif, K. M., Osman E. A. M., Abdullah, R., AbelKalder, N. (2011). Response of Potato Plants to Potassium Fertilizer Rates and Soil Moisture Deficit. Advances in Applied Science Research, 2 (2), 388-397.
  • Allison, M. F., Fowler, J. H., Allen, E. J. (2001). Factors Affecting the Magnesium Nutrition of Potatoes (Solanum Tuberosum). The Journal of Agricultural Science, 137 (4), 397-409.
  • Arvanitoyannis, I., Vaitsi, O., Mavromatis, A. (2008). Potatoes: A Comparative Study of The Effect of Cultivars and Cultivation Conditions and Genetic Modification on The Physico-Chemical Properties of Potato Tubers in Conjunction with Multivariate Analysis Towards Authenticity. Critical Reviews in Food Science and Nutrition, 48, 799–823.
  • Bezak-Mazur, E., Stoinska, R. (2013). The Importance of Phosphorus in the Environment – Review Article. Archives of Waste Management and Environmental Protection, 15 (3), 33-42.
  • Bogucka, B., Elżbieta, T. (2018). Effect Of Nitrogen and Potassium Fertilization on Mineral and Amino Acid Content Of Colored Flesh Potato Cultivar Blue Congo. Journal of Plant Nutrition, 41 (7), 856-866.
  • Burrowes, J. D., Ramer, N. J. (2008). Changes in Potassium Content of Different Potato Varieties After Cooking. Journal of Renal Nutrition, 18 (6), 530-534.
  • Ciecko, Z., Wyszkowski, M., Zonowski, A., Krzywy, J. (2000). Modifications of Some Nutrients Content in Potato Tubers As The Effect on Npk and Mg Fertilization. Biuletyn Instytutu Hodowli Roslin i Nasiennictwa 213, 125–129.
  • Devaux, A., Goffart, J. P., Petsakos, A., Kromann, P., Gatt, M., Okello, J. (2020). Global Food Security, Contributions From Sustainable Potato Agrifood Systems, The Potato Crop (pp. 3–35). Springer International Publishing, Cham.
  • Fernandes, F. M., Soratto, R. P., Fernandes, A. M., Souza, E. F. C. (2021). Chlorophyll Meter-Based Leaf Nitrogen Status To Manage Nitrogen in Tropical Potato Production. Agronomy Journal, 113,1733–1746.
  • Harris, P. M. (1992). Mineral nutrition. The potato crop (pp. 162-213). Springer, Dordrecht.
  • Kacar, B. (1972). Bitki ve Toprağın Kimyasal Analizleri II. Bitki Analizleri. Ankara Üniv. Ziraat Fak. Yayınları No:453. Ankara.
  • Kahsay, W. S. (2019). Effects of Nitrogen and Phosphorus on Potatoes Production in Ethiopia: A Review. Cogent Food & Agriculture, 5 (1), 1-7.
  • Leszczyński W, 2012. Nutrition Value of Potato and Potato Products (Review of Literature). Bulletyn Instytutu Hodowli Aklimatyzacji Roslin, 266, 5–20.
  • Njira, K., Nabwami, J. (2015). A Review of Effects of Nutrient Elements on Crop Quality. African Journal of Food, Agriculture, Nutrition and Development, 15 (1), 9777-9793.
  • Nurmanov, Y. T., Chernenok, V. G., Kuzdanova, R. S. (2019). Potato in Response to Nitrogen Nutrition Regime and Nitrogen Fertilization. Field Crops Research 231,115–21.
  • Shen, X., Zhang, M., Devahastin, S., Guo, Z. (2019). Effects of Pressurized Argon and Nitrogen Treatments in Combination with Modified Atmosphere on Quality Characteristics of Fresh-Cut Potatoes. Postharvest Biology and Technology 149,159–65.
  • Singh, B., Raigond, P., Dutt, S., Kumar, M. (2020). Potatoes for Food and Nutritional Security. Potato Nutition and Food Security (pp. 1-12). Springer, Singapore.
  • Soltanpour, P. N., Workman, S. M. (1981). Use of Inductively-Coupled Plasma Spectroscopy for the Simultaneous Determination of Macro and Micro Nutrients in H4HCO3-DTPA Extracts of Soils, In Barnes R.M. (ed), Developments in Atomic Plasma Analysis, USA, pp. 673-680.
  • Trawczynski, C., Grzeskiewicz, H. (2006). Effect of The Agravita Multicomponent Fertilizer Under Conditions of Different Nitrogen Doses on The Yield and Some Quality Features of Potato Tubers Zeszyty Problemowe Postep˛ ow Nauk Rolniczych, 511, 149–155.
  • White, P. J., Bradshaw, J. E., Finlay, M., Dale, B., Ramsay, G., Hammond, J. P., Broadley, M. R. (2009). Relationships Between Yield and Mineral Concentrations in Potato Tubers. HortScience, 44 (1), 6-11.
  • Wierzbicka, A., Trawczyński, C. (2011). Effect Ofirrigation and Soil-Borne Microorganisms on The Macro and Micronutrient Content in Organic Potato Tubers. Fragmenta Agronomica, 28 (4), 139–148.
  • Wijesinha-Bettoni, R., Mouillé, B. (2019). The Contribution of Potatoes to Global Food Security, Nutrition and Healthy Diets. American Journal of Potato Research, 96, 139–149.
  • Zebarth, B. J., Rosen, C. J. (2007). Research Perspective on Nitrogen Bmp Development for Potato. American Journal of Potato Research, 84, 3–18.