Effects of organophosphate insecticide fenthion on lipid peroxidation and antioxidant enzymes in erythrocytes (In vitro)

Organofosfatlar tarafından oluşturulan reaktif oksijen türleri (ROS) çeşitli pestisitlerin toksisitesi ile ilgili olabilir. Bundan dolayı, bu çalışmada bir organofosfat insektisit olan fenthion'un in vitro şartlarda lipid peroksidasyonunu (LPO) ve antioksidan defans sistemini nasıl etkilediğini araştırmayı amaçladık. Bunun için iki deney yapıldı. Deney 1'de, sağlam eritrositlerde fenthion'un farklı dozlarının LPO ve süperoksit dismutaz (SOD), glutatyon peroksidaz (GSH-Px) ve katalaz (CAT) aktiviteleri üzerine etkisi çalışıldı. Her fenthion dozu önceden hazırlanmış olan sağlam eritrosit örnekleri ile +4C'de 0, 60 ve 180 dakika inkübe edildi. İnkübasyondan sonra malondialdehid (MDA) düzeyleri ve SOD, GSH-Px ve CAT aktiviteleri belirlendi. Deney 2'de, SOD, GSH-Px ve CAT aktiviteleri üzerine fenthion'un direkt etkilerini belirlemek için, eritrositler hemoliz edildi ve çeşitli fenthion dozları ile +4C'de 0, 60 ve 180 dakika inkübe edildi. Deney 1'de, MDA düzeyleri artan fenthion konsantrasyonu ve inkübasyon periyodu ile birlikte arttı, fakat SOD aktivitesi azaldı. Deney 2'de yalnız SOD aktivitesi önemli derecede azaldı. Bu bulgular ROS'un fenthion'un toksik etkileri ile ilgili olabileceğini gösterdi.

Organofosfaat indektisid fenthion'un eritrositlerde invitro lipid peroksidasyonu ve antioksidan enzimler üzerine etkileri

Reactive oxygen species (ROS) caused by organophosphates may be involved in the toxicity of various pesticides. Therefore, in this study we aimed to investigate how an organophosphate insecticide, fenthion, affects lipid peroxidation (LPO) and the antioxidant defense system in vitro. For this purpose, two experiments were carried out. In experiment 1, the effects of various doses of fenthion on LPO and the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) in intact erythrocytes were studied. Each fenthion dose was incubated with a previously prepared intact erythrocyte samples at +4C for 0, 60 and 180 min. After incubation, the malondialdehyde (MDA) levels and the activities of SOD, GSH-Px and CAT were determined. In experiment 2, in order to determine the direct effect of fenthion on the activities of SOD, GSH-Px and CAT, the erythrocytes were hemolysed and incubated with the various doses of fenthion at +4C for 0, 60 and 180 min. In experiment 1, MDA levels increased with increasing fenthion concentration and incubation period, but SOD activity decreased. In experiment 2, only SOD activity was significantly decreased. These findings demonstrate that ROS may be involved in the toxic effects of fenthion

Kaynakça

1. Gultekin F, Delibaş N, Yasar S, Kilinç I. In vivo changes in antioxidant systems and protective role of melatonin and a combination of vitamin C and Vitamin E on oxi dative damage in erythrocytes induced by chlorpyrifos-ethyl in rats. Arch Toxicol 75: 88-96, 2001. 2. Bachowski S, Kolaja KL, Xu Y, Ketcham CA, Stevenson DE, Walborg EF, Klaunig JE. Role of oxidative stress in the mechanism ofdieldrin 's hepatotoxicity. Ann ' Çlin Lab Sci27(3): 196-209, 1997. 3. Gupta (Dasgupta) J, D atta J, Sarkar A, Sengupta D. Effect of malathion on antioxidant defence system in human fetus - An in vitro study. Indian JExp Biol 30: 352- 354, 1992. 4. Yamano T, Morita S. Hepatotoxicity of trichlorfon and dichlon>os in isolated rat hepatocytes. Toxicology 76: 69-77, 1992. 5. Bagchi D, Bagchi M, Hassoun FA, Stohs SI. In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology 104: 129-140, 1995. 6. Draper HH, Had ley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186: 421- 431, 1990. 7. Woolliams JA, Wiener G, Anderson PH, McMurray CH. Variation in the activities of glutathione peroxidase and ^super oxide dismutase and in the concentration of copper in the blood various breed crosses of sheep. Re Vet Sci 34: 69-77, 1983. 8. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erytrocyte glutathione peroxidase. J Lab Cli'n Med 70: 158-169, 1967. 9. Aebi H. Catalase in vitro. Methods Enzymol 105: 121-126, 1984. 10. Dawson-Saunders B, Trapp RG. Basic and Clinical Statistics. Appleton and Lange, Norwalk, CT1994. ll.Datta J, Gupta (Dasgupta) J, Sarkar A, Sengupta D. Effects of organophosphorus insecticide phosphomidon on antioxidant defence components of human erythrocyte and plasma. Indian J Exp Biol 30: 65-67, 1992. , H.Gultekin F, Ozturk M, Akdoğan M. The effect of organophosphate insecticide chlorpyrifos-ethyl on lipid peroxidation and antioxidant enzymes (in vitro). Arch Toxicol 74: 533-538, 2000. 13. Patel PG, Chakrabarti CH. Changes in the activity of some hepatic enzymes during organophosphorus insecticide-acephate (orthene) treatment in albino rats. Indian J Physiol Pharmacol 26(4): 311-316, 1982. 14.Naqvi SM, Hasan M. Acetylhomocystein thiolactone protection against phosphamidon-induced alteration of regional superoxide dismutase activity in the central nervous system and its correlation with altered lipid peroxidation. Indian J Exp Biol 30: 850-852, 1992.

Kaynak Göster