Primer nörotransmitter metabolizma kusurları

Nörotransmitter metabolizma kusurları, nörotransmitter sentezi, yıkımı ve/veya taşınımındaki bozukluklardan kaynaklanan kalıtımsal metabolik hastalık grubudur. Bu grup hastalıklar kolaylıkla hipoksik iskemik ensefalopati veya serebral palsi gibi yanlış tanılar alabilir. Yeterli klinik değerlendirme, fizik muayene ve beyin omurilik sıvısı analizleri olmadan tanı koyulması olası olmayabilir. Klinik şüphe tanısal süreçteki en önemli basamaktır. Bu derlemede, primer monoamine nörotransmitter metabolizma bozuklukları alanında günümüze kadar edinilmiş bilgilerin ve tedavi stratejilerindeki yeni gelişmelerin özetlenmesi amaçlanmıştır

Primary neurotransmitter metabolism disorders

The neurotransmitter metabolism disorders are a group of inherited metabolic disorders that are caused by defective synthesis, breakdown and/or transport of neurotransmitters . These diseases may be easily misdiagnosed as hypoxic ischemic encephalopathy and cerebral palsy . Without sufficient physical examination, clinical assessment and further cerebrospinal fluid analysis the correct diagnosis imay not be possible. Clinical suspicion is the most important step in the diagnostic process. In this review, we aimed to summarize the current knowledge about primary monoamine neurotransmitter disorders and recent advances in therapeutic strategies

Kaynakça

1. Pearl PL, Capp PK, Novotny EJ, Gibson KM. Inherited disorders of neurotransmitters in children and adults. Clin Biochem 2005;38:1051-58. https://doi.org/10.1016/j.clinbiochem.2005.09.012

2. Pearl PL, Taylor JL, Trzcinski S, Sokohl A. The pediatric neurotransmitter disorders. J Child Neurol 2007;22:606-616. https://doi.org/10.1177/0883073807302619

3. Herlenius E, Lagercrantz H. Neurotransmitters and neuromodulators during early human development. Early Hum Dev 2001;65:21-37. https://doi.org/10.1016/S0378-3782(01)00189-X

4. Marin-Valencia I, Serrano M et al. Biochemical diagnosis of dopaminergic disturbances in paediatric patients: analysis of cerebrospinal fluid homovanillic acid and other biogenic amines. Clin Biochem 2008;41:1306-15. https://doi.org/10.1016/j.clinbiochem.2008.08.077

5. Kaufman S, Holtzman NA, Milstien S, Butler LJ, Krumholz A. Phenylketonuria due to a deficiency of dihydropteridine reductase. N Engl J Med 1975;293(16):785-790. https://doi.org/10.1056/NEJM197510162931601

6. Opladen T, Hoffman G, Blau N. An international survey of patients with tetrahydrobiopterin deficiencies presenting with hyperphenylalaninaemia. JIMD 2012;35(6):963-73. https://doi.org/10.1007/s10545-012-9506-x

7. Horvath GA, Stockler-Ipsiroglu SG, Salvarinova-Zivkovic R et al. Autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia: evidence of a phenotypic continuum between dominant and recessive forms. Mol Genet Metab 2008;94:127-31. https://doi.org/10.1016/j.ymgme.2008.01.003

8. Thöny B, Blau N. Mutations in the BH4-metabolizing genes GTP cyclohydrolase I, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase, carbinolamine-4a-dehydratase, and dihydropteridine reductase. Hum Mutat 2006;27:870-7. https://doi.org/10.1002/humu.20366

9. Longo N. Disorders of biopterin metabolism. JIMD 2009;32:333-342.

10. Woody RC, Brewster MA, Glasier C. Progressive intracranial calcification in dihydropteridine reductase deficiency prior to folinic acid therapy. Neurology 1989;39(5):673-675. https://doi.org/10.1212/WNL.39.5.673

11. Blau N, Heizmann CW, Sperl W, et al. Atypical (mild) forms of dihydropteridine reductase deficiency: neurochemical evaluation and mutation detection. Pediatr Res 1992;32:726-30. https://doi.org/10.1203/00006450-199212000-00021

12. Kurian MA, Gissen P, Smith M, Heales SJR, Clayton PT. The monoamine neurotransmitter disorders: an expanding range of neurological syndromes. The Lancet Neurology 2011;10(8):721-733. https://doi.org/10.1016/S1474-4422(11)70141-7

13. Segawa M, Nomura Y, Nishiyama N. Autosomal dominant guanosine triphosphate cyclohydrolase I defi ciency (Segawa disease). Ann Neurol 2003;54(Suppl 6):S32-45. https://doi.org/10.1002/ana.10630

14. Segawa M. Hereditary progressive dystonia with marked diurnal fluctuation. Brain Dev 2011;33:195-201. https://doi.org/10.1016/j.braindev.2010.10.015

15. Bonafe L, Thony B, Penzien JM et al. Mutations in the sepiapterin reductase gene cause a novel tetrahydrobiopterin-dependent monoamine-neurotransmitter deficiency without hyperphenylalaninemia. Am J Hum Genet 2001;69(2):269-277. https://doi.org/10.1086/321970

16. Marecos C, Ng J, Kurian MA. What is new for monoamine neurotransmitter disorders? J Inherit Metab Dis 2014;37(4):619-26. https://doi.org/10.1007/s10545-014-9697-4

17. Zorzi G, Redweik U, Trippe H, Penzien JM, Thony B, Blau N. Detection of sepiapterin in CSF of patients with sepiapterin reductase deficiency. Mol Genet Metab 2002;75(2):174-177. https://doi.org/10.1006/mgme.2001.3273

18. Neville BG, Parascandalo R, Farrugia R, Felice A. Sepiapterin reductase deficiency: a congenital dopa-responsive motor and cognitive disorder. Brain 2005;128:2291-2296. https://doi.org/10.1093/brain/awh603

19. Willemsen MA, Verbeek MM, Kamsteeg EJ, de Rijk-van Andel JF, Aeby A. Tyrosine hydroxylase deficiency: a treatable disorder of brain catecholamine biosynthesis. Brain 2010;133:1810-1822. https://doi.org/10.1093/brain/awq087

20. Pons R, Syrengelas D, Youroukos S et al. Levodopa-induced dyskinesias in tyrosine hydroxylase deficiency. Mov Disord 2013;28(8):1058-63. https://doi.org/10.1002/mds.25382

21. Grattan-Smith PJ, Wevers RA et al. Tyrosine hydroxylase defi ciency: Clinical manifestations of catecholamine insuffi ciency in infancy. Mov Disord 2002;17:354-59. https://doi.org/10.1002/mds.10095

22. Spitz MA, Nguyen MA, Roche S et al. Chronic Diarrhea in L-Amino Acid Decarboxylase (AADC) Deficiency: A Prominent Clinical Finding Among a Series of Ten French Patients. JIMD Rep 2016; Epub ahead of print https://doi.org/10.1007/8904_2016_550

23. Brun L Ngu LH, Keng WT et al. Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency. Neurology 2010;75:64-71. https://doi.org/10.1212/WNL.0b013e3181e620ae

24. Leuzzi V, Mastrangelo M, Polizzi A et al. Report of two never treated adult sisters with aromatic l-amino acid decarboxylase deficiency: a portrait of the natural history of the disease or an expanding phenotype? JIMD Rep 2015;15:39-45.

25. Allen GF, Land JM, Heales SJ. A new perspective on the treatment of aromatic L-amino acid decarboxylase deficiency. Mol Genet Metab 2009;97(1):6-14. https://doi.org/10.1016/j.ymgme.2009.01.010

26. Mills PB, Footitt EJ, Mills KA. Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency). Brain 2010;133:2148-59. https://doi.org/10.1093/brain/awq143

27. Guerin A, Aziz AS, Mutch C et al. Pyridox(am)ine-5- phosphate oxidase deficiency treatable cause of neonatal epileptic encephalopathy with burst suppression. Case Report and Review of the Literature 2015;30(9):1218-25.

28. Mills PB, Camuzeaux SS, Footitt EJ et al. Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome. Brain 2014;137(Pt 5):1350-60. https://doi.org/10.1093/brain/awu051

29. Stockler S, Plecko B, Gospe SM Jr et al. Pyridoxine dependent epilepsy and antiquitin deficiency : clinical and molecular characteristics and recommendations for diagnosis, treatment and follow-up. Mol Genet Metab 2011;104(1-2):48-60. https://doi.org/10.1016/j.ymgme.2011.05.014

30. Lenders JW, Eisenhofer G, Abeling NG et al. Specific genetic deficiencies of the A and B isoenzymes of monoamine oxidase are characterized by distinct neurochemical and clinical phenotypes. J Clin Invest 1996;97(4):1010-9.

31. O’Leary RE, Shih JC, Hyland K, Kramer N, Asher YJ, Graham JM Jr. De novo microdeletion of Xp11.3 exclusively encompassing the monoamine oxidase A and B genes in a male infant with episodic hypotonia: a genomics approach to personalized medicine. Eur J Med Genet 2012;55(5):349-53. https://doi.org/10.1016/j.ejmg.2012.01.007

32. Liu HY, Huang J, Wang RL et al. A novel missense mutation of NDP in a Chinese family with X-linked familial exudative vitreoretinopathy. J Chin Med Assoc 2016;79(11):633-638. https://doi.org/10.1016/j.jcma.2016.08.002

33. Gillman. P. K. Advances pertaining to the pharmacology and interactions of irreversible nonselective monoamine oxidase inhibitors. J Clin Psychopharmacol 2011;31:66-74. https://doi.org/10.1097/JCP.0b013e31820469ea

34. Robertson D, Garland EM. Dopamine betahydroxylase deficiency. Gene Reviews 2013.

35. Timmers HJ, Deinum J, Wevers RA, Lenders JW. Congenital dopamine-beta-hydroxylase deficiency in humans. Ann N Y Acad Sci 2004;1018:520-3. https://doi.org/10.1196/annals.1296.064

36. Rilstone JJ, Alkhater RA, Minassian BA. Brain dopamineserotonin vesicular transport disease and its treatment. N Engl J Med 2013;368(6):543-50.

37. Ng J, Heales SJ, Kurian MA. Clinical features and pharmacotherapy of childhood monoamine neurotransmitter disorders. Paediatr Drugs 2014;16(4):275-91. https://doi.org/10.1007/s40272-014-0079-z

38. Kurian MA, Zhen J, Cheng SY et al. Homozygous loss-offunction mutations in the gene encoding the dopamine transporter are associatedwith infantile parkinsonism-dystonia. J Clin Invest 2009;119(6):1595-603.

39. Kurian MA, Li Y, Zhen J et al. Clinical and molecular characterisation of hereditary dopamine transporter deficiency syndrome: an observational cohort and experimental study. Lancet Neurol 2011;10(1):54-62. https://doi.org/10.1016/S1474-4422(10)70269-6

40. Ng J, Zhen J, Meyer E et al. Dopamine transporter deficiency syndrome: phenotypic spectrum from infancy to adulthood. Brain 2014;137:1107-19. https://doi.org/10.1093/brain/awu022

41. Hansen FH, Skjørringe T, Yasmeen S et al. Missense dopamine transporter mutations associate with adult parkinsonism and ADHD. J Clin Invest 2014;124(7):3107-20. https://doi.org/10.1172/JCI73778

Kaynak Göster