Endokron Restorasyonlar ve Endokron Restorasyonlarda Kullanilan Materyaller

Günümüzde aşırı madde kaybına uğramış kanal tedavili dişlerin tedavi yaklaşımında post-kor sistemlerine alternatif olarak endokron restorasyonlar tercih edilmektedir. Seramik materyallerin göstermiş olduğu gelişmeler, farklı mekanik ve estetik özelliklere sahip materyallerin üretimi, adeziv ve bilgisayar destekli tasarım/üretim [Computer Aided Design/Computer Aided Manufacture (CAD/CAM)] sistemlerinde görülen gelişmeler endokron restorasyonların kullanımını yaygınlaştırmıştır. Literatürde feldspatik porselen, zirkonya, kompozit, lityum disilikat cam seramik, lösitle güçlendirilmiş cam seramik ve resin (rezin) nano-seramik gibi materyallerden üretilmiş endokronların mekanik ve estetik özelliklerinin değerlendirildiği çalışmalar bulunmaktadır. Bu makalenin amacı endokron restorasyonlar ve endokron yapımında kullanılan materyaller hakkında bilgi vermektir

Endocrown Restorations and Materials Used In Endocrown Restorations

Today, endocrown restorations are preferred as an alternative to post-core systems in the treatment approach of root canal treated teeth that have suffered excessive material loss. The developments in ceramic materials, the production of materials with different mechanical and aesthetic properties, the developments in adhesive and computer aided design/production [Computer Aided Design/Computer Aided Manufacture (CAD/CAM)] systems have made the use of endocrown restorations widespread. In the literature, there are studies evaluating the mechanical and aesthetic properties of endocrowns made of materials such as feldpathic porcelain, zirconia, composite, lithium disilicate glass ceramic, leucite reinforced glass ceramic and resin nano-ceramic. The purpose of this article is to give information about endocrown restorations and materials used in endocrown construction.

___

  • 1. Akkayan B, Gülmez T. Resistance to fracture of endodontically treated teeth restored with different post systems. The Journal of prosthetic dentistry. 2002;87(4):431-7.
  • 2. Veselinović V, Todorović A, Lisjak D, Lazić V. Restoring endodontically treated teeth with all-ceramic endo-crowns: case report. Stomatološki glasnik Srbije. 2008;55(1):54-64.
  • 3. Dietschi D, Duc O, Krejci I, Sadan A. Biomechanical considerations for the restoration of endodontically treated teeth: a systematic review of the literature, Part II (Evaluation of fatigue behavior, interfaces, and in vivo studies). Quintessence International. 2008;39(2)):117-29.
  • 4. Lise DP, Van Ende A, De Munck J, Suzuki TYU, Vieira LCC, Van Meerbeek B. Biomechanical behavior of endodontically treated premolars using different preparation designs and CAD/CAM materials. Journal of dentistry. 2017;59:54-61.
  • 5. Sedrez-Porto JA, da Rosa WLdO, Da Silva AF, Münchow EA, PereiraCenci T. Endocrown restorations: A systematic review and meta-analysis. Journal of dentistry. 2016;52:8-14.
  • 6. Pissis P. Fabrication of a metal-free ceramic restoration utilizing the monobloc technique. Practical periodontics and aesthetic dentistry: PPAD. 1995;7(5):83-94.
  • 7. Bindl A, Mormann WH. Clinical evaluation of adhesively placed Cerec endo-crowns after 2 years-preliminary results. Journal of Adhesive Dentistry. 1999;1:255-66.
  • 8. Schwartz RS, Robbins JW. Post placement and restoration of endodontically treated teeth: a literature review. Journal of endodontics. 2004;30(5):289-301.
  • 9. Lin CL, Chang YH, Chang CY, Pai CA, Huang SF. Finite element and Weibull analyses to estimate failure risks in the ceramic endocrown and classical crown for endodontically treated maxillary premolar. European journal of oral sciences. 2010;118(1):87-93.
  • 10. Fages M, Bennasar B. The endocrown: a different type of all-ceramic reconstruction for molars. J Can Dent Assoc. 2013;79:d140.
  • 11. Dejak B, Młotkowski A. 3D-Finite element analysis of molars restored with endocrowns and posts during masticatory simulation. Dental Materials. 2013;29(12):e309-e17.
  • 12. Edelhoff D, Sorensen JA. Tooth structure removal associated with various preparation designs for anterior teeth. The Journal of prosthetic dentistry. 2002;87(5):503-9.
  • 13. Zarone F, Sorrentino R, Apicella D, Valentino B, Ferrari M, Aversa R, et al. Evaluation of the biomechanical behavior of maxillary central incisors restored by means of endocrowns compared to a natural tooth: a 3D static linear finite elements analysis. Dental Materials. 2006;22(11):1035-44.
  • 14. Bindl A, Richter B, Mörmann WH. Survival of ceramic computer-aided design/manufacturing crowns bonded to preparations with reduced macroretention geometry. Int J Prosthodont. 2005 May-Jun;18(3):219-24
  • 15. Biacchi G, Basting R. Comparison of fracture strength of endocrowns and glass fiber post-retained conventional crowns. Operative dentistry. 2012;37(2):130-6.
  • 16. Mörmann WH, Bindl A, Lüthy H, Rathke A. Effects of preparation and luting system on all-ceramic computer-generated crowns. International Journal of Prosthodontics. 1998;11(4) ):333-9.
  • 17. Rocca GT, Krejci I. Crown and post-free adhesive restorations for endodontically treated posterior teeth: from direct composite to endocrowns. Eur J Esthet Dent. 2013;8(2):156-79.
  • 18. Magne P, Knežević A. Simulated fatigue resistance of composite resin vs. porcelain CAD-CAM overlay restorations on endodontically-treated molars. Quintessence International. 2009;40(2):41-9.
  • 19. Gregor L, Bouillaguet S, Onisor I, Ardu S, Krejci I, Rocca GT. Microhardness of light-and dual-polymerizable luting resins polymerized through 7.5-mm-thick endocrowns. The Journal of prosthetic dentistry. 2014;112(4):942-8.
  • 20. Einhorn M, DuVall N, Wajdowicz M, Brewster J, Roberts H. Preparation ferrule design effect on endocrown failure resistance. Journal of Prosthodontics. 2019;28(1):e237-e42.
  • 21. Tzimas K, Tsiafitsa M, Gerasimou P, Tsitrou E. Endocrown restorations for extensively damaged posterior teeth: clinical performance of three cases. Restorative dentistry & endodontics. 2018;43(4):38.
  • 22. El-Damanhoury HM, Haj-Ali RN, Platt JA. Fracture resistance and microleakage of endocrowns utilizing three CAD-CAM blocks. Operative dentistry. 2015;40(2):201-10.
  • 23. Zoidis P, Bakiri E, Polyzois G. Using modified polyetheretherketone (PEEK) as an alternative material for endocrown restorations: A short-term clinical report. The Journal of prosthetic dentistry. 2017;117(3):335-9.
  • 24. Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. International Journal of prosthodontics. 2015;28(3) , 227–35.
  • 25. Guess PC, Schultheis S, Bonfante EA, Coelho PG, Ferencz JL, Silva NR. All-ceramic systems: laboratory and clinical performance. Dental clinics. 2011;55(2):333-52.
  • 26. Kim B, Zhang Y, Pines M, Thompson V. Fracture of porcelain-veneered structures in fatigue. Journal of dental research. 2007;86(2):142-6.
  • 27. Scherrer SS, Quinn GD, Quinn JB. Fractographic failure analysis of a Procera® AllCeram crown using stereo and scanning electron microscopy. dental materials. 2008;24(8):1107-13.
  • 28. Kırmalı Ö, Özdemir AK. Zirkonya Esaslı Seramiklerİnönü Üniversitesi Sağlık Bilimleri Dergisi. 2012: 2: 15-8.
  • 29. Vagkopoulou T, Koutayas SO, Koidis P, Strub JR. Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic. European journal of esthetic dentistry. 2009;4(2):130–51.
  • 30. Manicone PF, Iommetti PR, Raffaelli L. An overview of zirconia ceramics: basic properties and clinical applications. Journal of dentistry. 2007;35(11):819-26.
  • 31. Chevalier J, Olagnon C, Fantozzi G. Subcritical crack propagation in 3Y‐TZP ceramics: static and cyclic fatigue. Journal of the American Ceramic Society. 1999;82(11):3129-38.
  • 32. Luthardt R, Holzhüter M, Sandkuhl O, Herold V, Schnapp J, Kuhlisch E, et al. Reliability and properties of ground Y-TZP-zirconia ceramics. Journal of dental research. 2002;81(7):487-91.
  • 33. Tinschert J, Natt G, Mautsch W, Augthun M, Spiekermann H. Fracture Resistance of Lithium Disilicate--, Alumina-, and Zirconia-Based Three-Unit Fixed Partial Dentures: A Laboratory Study. International Journal of Prosthodontics. 2001;14(3):231–238.
  • 34. Garvie R, Hannink R, Pascoe R. Ceramic steel? Nature. 1975;258(5537):703-4.
  • 35. Chevalier J, Gremillard L, Virkar AV, Clarke DR. The tetragonal‐monoclinic transformation in zirconia: lessons learned and future trends. Journal of the American Ceramic Society. 2009;92(9):1901-20.
  • 36. Agnini A, Agnini A, Coachman C. Digital dental revolution: the learning curve: Quintessence Pub. Co.; 2015.
  • 37. Karataşlı B, Alpkılıç DŞ. Zirkonyanın Diş Hekimliğinde Kullanım Alanları. Turkiye Klinikleri Prosthodontics-Special Topics. 2017;3(2):94-103.
  • 38. Church T. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials. 81 Medical Group San Antonio United States, 59th Medical Wing (AETC) Joint Base San Antonio, 2016.
  • 39. Lawn BR, Deng Y, Thompson VP. Use of contact testing in the characterization and design of all-ceramic crownlike layer structures: a review. The Journal of prosthetic dentistry. 2001;86(5):495-510.
  • 40. Krell A, Hutzler T, Klimke J. Transmission physics and consequences for materials selection, manufacturing, and applications. Journal of the European Ceramic Society. 2009;29(2):207-21.
  • 41. Demirekin ZB, Çavdarlı K, Türkaslan S. Seramik Veneerler: Ağız İçi Tamir İçin Koruyucu Bir Seçenek. SDÜ Sağlık Bilimleri Dergisi. 2016;7(2):64-8.
  • 42. Della Bona A, Corazza PH, Zhang Y. Characterization of a polymerinfiltrated ceramic-network material. Dental Materials. 2014;30(5):564-9.
  • 43. Nguyen J, Ruse D, Phan A, Sadoun M. High-temperature-pressure polymerized resin-infiltrated ceramic networks. Journal of dental research. 2014;93(1):62-7.
  • 44. Sevmez H, Bankoğlu Güngör M, Yılmaz H. Rezin Matriks Seramikler. Turkiye Klinikleri Dishekimligi Bilimleri Dergisi. 2019;25(3) :351-9.
  • 45. He L-H, Swain M. A novel polymer infiltrated ceramic dental material. dental materials. 2011;27(6):527-34.
  • 46. Garber DA, Goldstein RE. Porcelain & composite inlays & onlays: esthetic posterior restorations: Quintessence Chicago, IL; 1994.
  • 47. Egilmez F, Ergun G, Cekic-Nagas I, Vallittu PK, Lassila LV. Short and long term effects of additional post curing and polishing systems on the color change of dental nano-composites. Dental materials journal. 2013;32(1):107- 14.
  • 48. Blank JT. Scientifically based rationale and protocol for use of modern indirect resin inlays and onlays. Journal of Esthetic and Restorative Dentistry. 2000;12(4):195-208.
  • 49. Ziemiecki T, Wendt Jr S, Leinfelder K. Effect of heating composite resin on posterior proximal contact maintenance. J Dent Res. 1992;71:719.
  • 50. Asmussen E, Peutzfeld A. Mechanical properties of heat treated restorative resins for use in the inlay/onlay technique. European Journal of Oral Sciences. 1990;98(6):564-7.
  • 51. Thordrup M, Isidor F, Hörsted-Bindslev P. A 5-year clinical study of indirect and direct resin composite and ceramic inlays. Quintessence International. 2001;32(3): 199–205.
  • 52. Wendt Jr SL, Leinfelder KF. The clinical evaluation of heat-treated composite resin inlays. The Journal of the American Dental Association. 1990;120(2):177-81.
  • 53. Dourado Loguercio A, Roberto de Oliveira Bauer J, Reis A, Miranda Grande RH. In vitro microleakage of packable composites in Class II restorations. Quintessence International. 2004;35(1): 29–34.
  • 54. Mendonça JS, Neto RG, Santiago SL, Lauris J, Navarro M, de Carvalho RM. Direct resin composite restorations versus indirect composite inlays: oneyear results. J Contemp Dent Pract. 2010;11(3):25-32.
  • 55. Wendt S. The effect of heat as a secondary cure upon the physical properties of three composite resins: I. Diametral tensile strength, compressive strength and marginal dimensional stability. Quintessence int. 1987;18:265-71.
  • 56. Monaco C, Baldissara P, Dall'Orologio GD, Scotti R. Short-term clinical evaluation of inlay and onlay restorations made with a ceromer. International Journal of Prosthodontics. 2001;14(1) 81–8.
  • 57. Otto T, De Nisco S. Computer-aided direct ceramic restorations: a 10-year prospective clinical study of Cerec CAD/CAM inlays and onlays. International Journal of Prosthodontics. 2002;15(2): 122–8.
  • 58. Chen F, Ou H, Lu B, Long H. A constitutive model of polyether-etherketone (PEEK). journal of the mechanical behavior of biomedical materials. 2016;53:427-33.
  • 59. Zoidis P, Papathanasiou I. Modified PEEK resin-bonded fixed dental prosthesis as an interim restoration after implant placement. The Journal of prosthetic dentistry. 2016;116(5):637-41.
  • 60. Skinner HB. Composite technology for total hip arthroplasty. Clinical orthopaedics and related Research. 1988(235):224-36.
  • 61. Shekar RI, Kotresh T, Rao PD, Kumar K. Properties of high modulus PEEK yarns for aerospace applications. Journal of applied polymer science. 2009;112(4):2497-510.
  • 62. Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. Journal of prosthodontic research. 2016;60(1):12-9.
  • 63. Silthampitag P, Chaijareenont P, Tattakorn K, Banjongprasert C, Takahashi H, Arksornnukit M. Effect of surface pretreatments on resin composite bonding to PEEK. Dental materials journal. 2016;35(4):668-74.
HRÜ Uluslararası Diş Hekimliği ve Oral Araştırmalar Dergisi-Cover
  • Başlangıç: 2021
  • Yayıncı: Harran Üniversitesi