On function spaces with wavelet transform in $L_{omega}^p(Bbb{R}^d X Bbb{R}_+)$

On function spaces with wavelet transform in $L_{omega}^p(Bbb{R}^d X Bbb{R}_+)$

Let $omega_1$ and $omega_2$ be weight functions on $Bbb{R}^d, (Bbb{R}^d X Bbb{R}_+)$, respectively. Throughout this paper, we define $D^{p,q}_{omega_1,omega_2} (Bbb{R}^d)$ to be the vector space of $f in L^p_{omega_1} (Bbb{R}^d)$ such that the wavelet transform $W_gf$ belongs to $L^q_{omega_2} (Bbb{R}^d X Bbb{R}_+)$ for $1 leq p, q < infty$, where $0 neq g in S (Bbb{R}^d)$ . We endow this space with a sum norm and show that $D^{p,q}_{omega_1,omega_2} (Bbb{R}^d)$ becomes a Banach space. We discuss inclusion properties, and compact embeddings between these spaces and the dual of $D^{p,q}_{omega_1,omega_2} (Bbb{R}^d)$. Later we accept that the variable s in the space $D^{p,q}_{omega_1,omega_2} (Bbb{R}^d)$ is fixed. We denote this space by $(D^{p,q}_{omega_1,omega_2})_s (Bbb{R}^d)$ , and show that under suitable conditions $(D^{p,q}_{omega_1,omega_2})_s (Bbb{R}^d)$ is an essential Banach Module over $L^1_{omega_1} (Bbb{R}^d)$ . We obtain its approximate identities. At the end of this work we discuss the multipliers from $(D^{p,q}_{omega_1,omega_2})_s (Bbb{R}^d)$ into $L^{infty}_{(omega_1)^{-1}} (Bbb{R}^d)$, and from $L^1_{omega_1} (Bbb{R}^d)$ into $(D^{p,q}_{omega_1,omega_2})_s (Bbb{R}^d)$

___

  • [1] Daubechies, I. Ten Lectures on Wavelets (CBMS-NSF, SIAM, Philadelphia, 1992).
  • [2] Do˘gan, M. and Gürkanlı, A.T. On functions with Fourier transforms in Sw, Bull. Cal. Math. Soc. 92 (2), 111-120, 2000.
  • [3] Dogan, M. and Gürkanlı, A.T. Multipliers of the space Sw (G), Mathematica Balkanica, New Series 15 (3-4), 199–212, 2001.
  • [4] Doran, R. S. and Wichmann, J. Approximate Identity and Factorization in Banach Modules (Lecture Notes in Math. 768, Springer-Verlag, Berlin, Heidelberg, New York, 1979).
  • [5] Duyar, C. and Gürkanlı, A.T. Multipliers and relative completion in weighted Lorentz space, Acta Mathematica Scientia 23B(4), 467–476, 2003.
  • [6] Feichtinger, H.G. and Gürkanlı, A.T. On a family of weighted convolution algebras, Internat. J. Math. Sci. 13 (3), 517–526, 1990.
  • [7] Fischer, R.H., Gürkanlı, A.T. and Liu, T. S. On a family of weighted spaces, Math. Slovaca 46 (1), 71–82, 1996.
  • [8] Gaudry, G. I. Multipliers of weighted Lebesque and measure spaces, Proc. London Math. Soc. 19 (3), 327–340, 1969.
  • [9] Gröchenig, K. Foundations of Time-Frequency Analysis (Birkhauser, Boston, 2001).
  • [10] Gürkanlı, A.T. Multipliers of some Banach ideals and Wiener-Ditkin Sets, Math. Slovaca 55 (2), 237–248, 2005.
  • [11] Gürkanlı, A.T. Time frequency analysis and multipliers of the space M(p, q)(Rd), S(p, q) ? Rd  , J. Math. Kyoto Univ. 46 (3), 595–616, 2006.
  • [12] Gürkanlı, A.T. Tensor product factorization and multipliers of some Banach modules, International Journal of Applied Mathematics 20 (5), 661–670, 2007.
  • [13] Gürkanlı, A.T. Compact embeddings of the spaces Ap w,! ? Rd  , Taiwanese Journal of Mathematics 12 (7), 1757–1767, 2008.
  • [14] Larsen, R. Banach Algebras an Introduction (Marcel Dekker Inc., New York, 1973).
  • [15] Liu, T. S. and Rooij, A.Van. Sums and intersections of normed linear spaces, Mathematische Nachrichten 42, 29–42, 1969.
  • [16] Reiter, H. Classical Harmonic Analysis and Locally Compact Groups (Oxford Universty Pres, Oxford, 1968).
  • [17] Rieffel, M.A. Induced Banach representation of Banach algebras and locally compact groups, J. Funct. Anal. 1, 443–491, 1967.
  • [18] Rieffel, M.A. Multipliers and tensor products of Lp-spaces of locally compact groups, Studia Math. 33, 71–82, 1969.
  • [19] Sandıkçı, A. and Gürkanlı, A.T. The space p m ? Rd  and some properties, Ukranian Mathematical Journal 58 (1), 139–145, 2006.
  • [20] Wang, H.C. Homogeneous Banach Algebras (Marcel Dekker INC., New York, 1977).