Limit Point and Limit Circle Cases for Dynamic Equations on Time Scales

Anahtar Kelimeler:

-

Limit Point and Limit Circle Cases for Dynamic Equations on Time Scales

Keywords:

-,

___

  • Agarwal, R. P., Bohner, M. and Wong, P. J. Y. Sturm-Liouville eigenvalue problem on time scales, Appl. Math. Comput. 99, 153–166, 1999.
  • Akhiezer, N. I. The Classical Moment Problem and Some Related Questions in Analysis (Hafner, New York, 1965).
  • Amster, P., De Napoli, P. and Pinasco, J. P. Eigenvalue distribution of second-order dynamic equations on time scales considered as fractals, J. Math. Anal. Appl. 343, 573–584, 2008. [4] Amster, P., De Napoli, P. and Pinasco, J. P. Detailed asymptotic of eigenvalues on time scales, J. Diff. Equ. Appl. 15, 225–231, 2009.
  • Atici, F. M. and Guseinov, G. Sh. On Green’s functions and positive solutions for boundary value problems on time scales, J. Comput. Appl. Math. 141, 75–99, 2002.
  • Bohner, M. and Guseinov, G. Sh. Improper integrals on time scales, Dynam. Systems Appl. 12, 45–65, 2003.
  • Bohner, M. and Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications(Birkh¨auser, Boston, 2001).
  • Bohner, M. and Peterson, A. (Eds.), Advances in Dynamic Equations on Time Scales (Birkh¨auser, Boston, 2003).
  • Chyan, C. J., Davis, J. M., Henderson, J. and Yin, W. K. C. Eigenvalue comparisons for differential equations on a maesure chain, Electronic Journal of Differential Equations 1998, 7pp., 1998.
  • Coddington, E. A. and Levinson, N. Theory of Ordinary Differential Equations (McGraw- Hill, New York, 1955).
  • Davidson, F. A. and Rynne, B. P. Global bifurcation on time scales, J. Math. Anal. Appl. 267, 345–360, 2002.
  • Davidson, F. A. and Rynne, B. P. Eigenfunction expansions in L2spaces for boundary value problems on time scales, J. Math. Anal. Appl. 335, 1038–1051, 2007.
  • Erbe, L. and Hilger, S. Sturmian theory on measure chains, Differential Equations and Dynamical Systems 1, 223–246, 1993.
  • Guseinov, G. Sh. Integration on time scales, J. Math. Anal. Appl. 285, 107–127, 2003.
  • Guseinov, G. Sh. Self-adjoint boundary value problems on time scales and symmetric Green’s functions, Turkish J. Math. 29, 365–380, 2005.
  • Guseinov, G. Sh. Eigenfunction expansions for a Sturm-Liouville problem on time scales, International Journal of Difference Equations 2, 93–104, 2007.
  • Guseinov, G. Sh. An expansion theorem for a Sturm-Liouville operator on semi-unbounded time scales, Advances in Dynamical Systems and Applications 3, 147–160, 2008.
  • Guseinov, G. Sh. Calculus and dynamic systems on time scales, In: A. Ma˘gden, editor, Pro- ceedings of the 20th National Symposium of Mathematics, Erzurum, Turkey (in Turkish), 1–29, 2009.
  • Hellinger, E. Zur Stieltjesschen Kettenbruchtheorie, Math. Ann. 86, 18–29, 1922.
  • Hilger, S. Analysis on measure chains–a unified approach to continuous and discrete calcu- lus, Results Math. 18, 18–56, 1990.
  • Huseynov, A. and Bairamov, E. On expansions in eigenfunctions for second order dynamic equations on time scales, Nonlinear Dynamics and Systems Theory 9, 77–88, 2009.
  • Putnam, C. R. On the spectra of certain boundary value problems, Amer. J. Math. 71, 109–111, 1949.
  • Titchmarsh, E. C. Eigenfunction Expansions Assosiated with Second-Order Differential Equations, Part I, 2nd ed.(Oxford University Press, Oxford, 1962).
  • Weyl, H. ¨Uber gew¨ohnliche Differentialgleichungen mit Singulrit¨aten und die zugeh¨origen Entwicklungen willk¨urlicher Funktionen, Math. Annalen 68, 220–269, 1910.
  • Yosida, K. Lectures on Differential and Integral Equations (Interscience, New York, 1960).