Homotopic properties ofKA-digitizations ofn-dimensional Euclidean spaces

Homotopic properties ofKA-digitizations ofn-dimensional Euclidean spaces

ForX(⊂$R^n$), assume the subspace(X, $E_n{^X})induced by then-dimensional Euclideantopological space(Rn, En). LetZbe the set of integers. Khalimsky topology onZ,denoted by(Z, κ), is generated by the set{{2m−1,2m,2m+ 1}|m∈Z}as a subbase.Besides, Khalimsky topology on$Z^n$, n∈N, denoted by($Z^n, κ^n$), is a product topologyinduced by(Z, κ). Proceeding with a digitization of ($X, E^n_{X}$)in terms of the Khalimsky(K-, for short) topology, we obtain aK-digitized space in$Z^n$, denoted byDK(X)(⊂$Z^n$),which is aK-topological space. Considering further$D_K$(X)withK-adjacency, we obtain atopological graph related to theK-topology(aKA-space for short) denoted by$D_{KA}$(X)(seean algorithm in Section 3). Motivated by anA-homotopy betweenA-maps forKA-spaces,the present paper establishes a new homotopy, called anLA-homotopy, which is suitablefor studying homotopic properties of both(X, EnX)andDKA(X)because a homotopyfor Euclidean topological spaces has some limitations of digitizing($X, E^n_{X}$). The goal ofthe paper is to study some relationships among an ordinary homotopy equivalence forspaces($X, E^n_{X}$), anLA-homotopy equivalence for spaces(X, EnX), and anA-homotopyequivalence forKA-spaces$D_{KA}$(X). Finally, we classifyKA-spaces (resp.($X, E^n_{X}$))viaanA-homotopy equivalence (resp.anLA-homotopy equivalence). This approach canfacilitate studies of applied topology, approximation theory and digital geometry.

___

  • [1]P. Alexandroff,Diskrete Rume, Mat. Sb.2, 501–518, 1937.
  • [2]V.E. Brimkov and R.P. Barneva,Plane digitization and related combinatorial prob-lems, Discrete Appl. Math.147, 169–186, 2005.
  • [3]V.A. Chatyrko, S.-E. Han, and Y. Hattori,Some remarks concerning semi-T12spaces,Filomat28(1), 21–25, 2014.
  • [4]U. Eckhardta and L.J. Latecki,Topologies for the digital spacesZ2andZ3, Comput.Vis. Image Underst.90(3), 295–312, 2003.
  • [5]A. Gross and L.J. Latecki,A realistic digitization model of straight lines, Comput.Vis. Image Underst.67(2), 131–142, 1997.
  • [6]S.-E. Han,On the classification of the digital images up to a digital homotopy equiv-alence, J. Comput. Commun. Res.10, 194–207, 2000.
  • [7]S.-E. Han,Thek-homotopic thinning and a torus-like digital image inZn, J. Math.Imaging Vis.31(1), 1–16, 2008.
  • [8]S.-E. Han,KD-(k0, k1)-homotopy equivalence and its applications, J. Korean Math.Soc.47, 1031–1054, 2010.
  • [9]S.-E. Han,Homotopy equivalence which is suitable for studying Khalimskyn-dimensional spaces, Topol. Appl.159, 1705–1714, 2012.
  • [10]S.-E. Han,Existence of the categoryDT C2(k)which is equivalent to the given categoryKAC2, Ukranian Math. J.76(8), 1264–1276, 2016.
  • [11]S.-E. Han,A digitization method of the EuclideannD space associated with the Khal-imsky adjacency structure, Comput. Appl. Math.36, 127–144, 2017.
  • [12]S.-E. Han,U(k)- andL(k)-homotopic properties of digitizations ofnD Hausdorffspaces, Hacet. J. Math. Stat.46(1), 124–144, 2017.
  • [13]S.-E. Han,Homotopic properties of anM A-digitization of2D Euclidean spaces, J.Comput. Sys. Sci.95(3), 165–175, 2018.
  • [14]S.-E. Han and S. Lee,Some properties of lattice-basedK- andM-maps, Honam Math.J.38(3), 625–642, 2016.
  • [15]S.-E. Han and A. Sostak,A compression of digital images derived from a Khalimskytopological structure, Comput. Appl. Math.32, 521–536, (2013).
  • [16]S.-E. Han and W. Yao,Homotopy based on Marcus-Wyse topology and its applications,Topol. Appl.201, 358–371, 2016.
  • [17]S.-E. Han and W. Yao,AnM A-digitization of Haussdorff spaces by using a con-nectedness graph of the Marcus-Wyse topology, Discrete Appl. Math.,216, 335–347,2017.
  • [18]G.T. Herman,Oriented surfaces in digital spaces, CVGIP: Graphical Models andImage Processing55, 381-396, 1993.
  • [19]J.-M. Kang, S.-E. Han, and K.-C. Min,Digitizations associated with several types ofdigital topological approaches, Comput. Appl. Math.36, 571–597, 2017.
  • [20]E. Khalimsky,Pattern analysis ofn-dimensional digital images, Proceedings IEEEInternational Conferences on Systems, Man, and Cybernetics, 1599–1562, 1986.
  • [21]E. Khalimsky,Topological structures in computer sciences, J. Appl. Math. Simulat.1(1), 25–40, 1987.
  • [22]E. Khalimsky, R. Kopperman, and P.R. Meyer,Computer graphics and connectedtopologies on finite ordered sets, Topol. Appl.36(1), 1–17, 1990.
  • [23]C.O. Kiselman,Digital geometry and mathematical morphology, Lecture Notes, Upp-sala University, Department of Mathematics, available at www.math.uu.se/ kiselman,2002.
  • [24]R. Klette and A. Rosenfeld,Digital straightness, Discrete Appl. Math.139, 197–230,2004.
  • [25]V. Kovalevsky,Axiomatic digital topology, J. Math. Imaging Vis.26, 41–58, 2006.
  • [26]G. Largeteau-Skapin and E. Andres,Discrete-Euclidean operations, Discrete Appl.Math.157, 510–523, 2009.
  • [27]E. Melin,Digital surfaces and boundaries in Khalimsky spaces, J. Math. Imaging Vis.28, 169–177, 2007.
  • [28]E. Melin,Continuous digitization in Khalimsky spaces, J. Approx. Theory150, 96–116, 2008.
  • [29]C. Ronse and M. Tajinea,Discretization in Hausdorff space, J. Math. Imaging Vis.12, 219–242, 2000.
  • [30]A. Rosenfeld,Digital straight line segments, IEEE Trans. Comput.23(12), 1264–1269,1974.
  • [31]A. Rosenfeld,Digital topology, Amer. Math. Monthly86, 76-87, 1979.
  • [32]P. Stelldinger and U. Köthe,Connectivity preserving digitization of blurred binaryimages in 2D and 3D, Comput. Graph.30, 70–76, 2006.
  • [33]E.H. Spanier,Algebraic topology, McGraw-Hill Inc., New York, 1966.