Bayesian estimation of Marshall-Olkin extended exponential parameters under various approximation techniques

Bayesian estimation of Marshall-Olkin extended exponential parameters under various approximation techniques

In this paper, we propse Bayes estimators of the parameters ofMarshall Olkin extended exponential distribution (MOEED) introduced by Marshall-Olkin [2] for complete sample under squarederror loss function (SELF). We have used different approximationtechniques to obtain the Bayes estimate of the parameters.Monte Carlo simulation study is carried out to compare the performance of proposed estimators with the corresponding maximumlikelihood estimator (MLE's) on the basis of their simulated risk.A real data set has been considered for illustrative purpose of the study.

___

  • Lindley, D. V. Approximate Bayes method, Trabajos de estadistica, Vol. 31, 223-237, 1980.
  • Marshall A. W. and Olkin, I. A new method for adding a parameter to a family of distri- butions with application to the exponential and Weibull families, Biometrika 84, 641-652, 1997
  • Rao, G. S., Ghitany M. E., and Kantam, R. R. L. Reliability test plans for Marshall-Olkin extended exponential distribution, Applied Mathematical Science, Vol. 3, no. 55, 2745-2755,
  • Gupta R. D. and Kundu, D. Generalized exponential distribution: Existing result and some recent developement, J.Stat. Plan. Inf., 137, pp. 3537-3547, 2007.
  • Singh, R., Singh, S. K., Singh, U., and Singh, G. P. Bayes estimator of the generalized- exponential parameters under Linex loss function using Lindley's Approximation, Data Science Journal, Vol. 7, 2008.
  • Singh, P. K., Singh, S. K., and Singh, U. Bayes estimator of the Inverse Gaussian Parame- ters under GELF using Lindley's Approximation, Communications in Statistics-Simulation and computation, 37, 1750-1762, 2008.
  • Panahi, Haniyeh and Asadi, Saeid Analysis of the type II hybrid censored Burr type XII distribution under Linex loss function, Applied Mathematical Science, Vol. 5, no. 79, 3929- , 2011.
  • Preda, V., Panaitescu, E., and Constantinescu, A. Bayes estimators of Modified-Weibull Distribution parameters using Lindley's approximation, Wseas Transactions on Mathemat- ics: issue, Vol. 9, 2010.
  • Chen, M. and Shao, Q. Monte Carlo estimation of Bayesian credible and HPD intervals, J. Comput. Graph. Statist., 8, 189-193, 1999.
  • Karandikar, R. L. On the Markov Chain Monte Carlo (MCMC) method, Sadhana, Vol. 31, Part2, pp. 81-104, April 2006.
  • Kadane, J. B. and Lazar, N. A. Method and criteria for model selection, Journal of the American Statistical Association, Vol. 99, pp. 279-290, 2004.
  • Berger, J. O. and Sun, D. Bayesian analysis for the Poly-Weibull distribution, Journal of the American Statistical Association, Vol. 88, 1412-1418, 1993.
  • Jaeckel, L. A. Robust estimates of location; symmetry and asymmetry contamination, Ann. Math. Statist., Vol. 42, pp. 1020-1034, Jun 1971.
  • Miller, R. B. Bayesian analysis of the two-parameter gamma distribution, Technometrics, Vol. 22, 65-69, 1980.
  • Lawless, J. F. Statistical Models and Methods for Lifetime data, (Wiley, New York, 1982).
  • Gupta, R. D. and Kundu, D. Exponentiated exponential distribution: an alternative to gamma and Weibull distributions, Biometrical J., 43 (1), 117-130, 2001.
  • Gupta, R. D. and Kundu, D. Generalized exponential distributions: diDerent methods of estimations, J. Statist. Comput. Simulations, 69 (4), 315-338, 2001.
  • Gupta, R. D. and Kundu, D. Generalized exponential distributions; Statistical Infer- ences, Journal of Statistical Theory and Applications, 2002 1, 101-118, 2002.
  • Birnbaum, Z. W. and Saunders, S. C. Estimation for a family of life distributions with ap- plications to fatigue. Journal of Applied Probability, 6, 328-347, 1969.
  • Zheng, G. On the Fisher information matrix in type-II censored data from the exponentiated exponential family, Biometrical Journal, 44 (3), 353-357, 2002.
  • Wood, A. Predicting software reliability, IEEE Transactions on Software Engineering, 22, -77, 1996.
  • Barlow, R. E. and Proschan, F. Statistical theory of reliability and life testing probability models, (Holt, Rinehart and Winston, New York, 1975).
  • Gelfand, A. E. and Smith, A. F. M. Sampling-Based Approaches to Calculating Marginal Densities, Journal of the American Statistical Association, Vol. 85, No. 410. pp. 398-409, 1990.
  • Upadhyay, S. K. and Gupta, A. A Bayes Analysis of Modified Weibull Distribution via Markov Chain, Monte Carlo Simulation. Journal. of Statistical Computation and Simulation, (3), 241-254, 2010.