On a subclass of the generalized Janowski type functions of complex order
In this paper, we introduce the class $\mathcal {JR}^{\lambda}_{b}\left(\alpha,\beta, \delta, A,B\right)$ of generalized Janowski type functions of complex order defined by using the Ruscheweyh derivative operator in the open unit disc $ \mathbb D=\left \{z\in \mathbb C: \left \vert z\right \vert <1\right \}$. The bound for the n-th coefficient and subordination relation are obtained for the functions belonging to this class. Some consequences of our main theorems are same as the results obtained in the earlier studies.
___
- [1] R.M. Goel and B.C. Mehrok, A subclass of univalent functions, Houston J. Math. 8,
343-357, 1982.
- [2] A.W. Goodman, On close-to-convex functions of higher order, Ann. Univ. Sci. Bu-
dapest Eötvös Sect. Math. 15, 17–30, 1972.
- [3] A.W. Goodman, Univalent Functions, Vol II. Somerset, NJ, USA Mariner, 1983.
- [4] M.M. Haidan and F.M. Al-Oboudi, Spirallike functions of complex order, J. Natural
Geom. 19, 53–72, 2000.
- [5] W. Janowski, Some extremal problems for certain families of analytic functions, Ann.
Polon. Math. 28, 297–326, 1973.
- [6] W. Kaplan , Close-to-convex schlicht functions, Michigan Math. J. 1, 169–185, 1952.
- [7] Ö.Ö. Kılıç, Coefficient Inequalities for Janowski type close-to-convex functions asso-
ciated with Ruscheweyh Derivative Operator, Sakarya Uni. J. Sci. 23 (5), 714-717,
2019.
- [8] Y. Polatoğlu, M. Bolcal, A. Şen and E. Yavuz, A study on the generalization of
Janowski functions in the unit disc, Acta Math. Aca. Paed. 22, 27–31, 2006.
- [9] M.O. Reade, On close-to-convex univalent functions, Michigan Math. J. 3, 59–62,
1955.
- [10] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math Soc. 49 (1),
109–115, 1975.
- [11] L. Špaček, Prispevek k teorii funcki prostych, Casopis Pest. Mat. a Fys. 62, 12-19,
1932.