Universal central extensions of braided crossed modules of Lie algebras

In this paper, we give a natural braiding on the universal central extension of a Lie crossed module with a given braiding in the category of Lie crossed modules. We also construct the universal central extension of a braided Lie crossed module in the category of braided Lie crossed modules, showing that, when one of these constructions exists, both of them exist and coincide.

___

  • [1] R. Brown and J.L. Loday, Van Kampen theorems for diagrams of spaces, Topology, 26 (3), 311–335, 1987.
  • [2] J.M. Casas and M. Ladra, Perfect crossed modules in Lie algebras, Comm. Algebra, 23 (5), 1625–1644, 1995.
  • [3] J.M. Casas and T. Van der Linden, Universal central extensions in semi-abelian categories, Appl. Categ. Struct. 22 (1), 253–268, 2014.
  • [4] D. Conduché, Modules croisés généralisés de longueur 2, J. Pure Appl. Algebra, 34 (2- 3), 155–178, 1984.
  • [5] G.J. Ellis, A nonabelian tensor product of Lie algebras, Glasgow Math. J. 33 (1), 101–120, 1991.
  • [6] A. Fernández-Fariña and M. Ladra, Braiding for categorical algebras and crossed modules of algebras I: Associative and Lie algebras, J. Algebra Appl. 19 (9), 2050176, 30 pp., 2020.
  • [7] A. Fernández-Fariña and M. Ladra, Braiding for categorical algebras and crossed modules of algebras II: Leibniz algebras, Filomat, 34 (5), 1443–1469, 2020.
  • [8] T. Fukushi, Perfect braided crossed modules and their $mod-q$ analogues, Hokkaido Math. J. 27 (1), 135–146, 1998.
  • [9] S.A. Huq, Commutator, nilpotency and solvability in categories, Quart. J. Math. Oxford, 2 (19), 363–389, 1968.
  • [10] G. Janelidze and G.M. Kelly, Galois theory and a general notion of central extension, J. Pure Appl. Algebra, 97 (2), 135–161, 1994.
  • [11] G. Janelidze, L. Márki and W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra, 168 (2-3), 367–386, 2002.
  • [12] A. Joyal and R. Street, Braided monoidal categories, Macquarie Math. Reports No. 860081, 1986.
  • [13] K.J. Norrie, Crossed modules and analogues of group theorems, Ph.D. thesis, King’s College, University of London, 1987.
  • [14] E. Ulualan, Braiding for categorical and crossed Lie algebras and simplicial Lie algebras, Turkish J. Math. 31 (3), 239–255, 2007.