Universal central extensions of braided crossed modules of Lie algebras
In this paper, we give a natural braiding on the universal central extension of a Lie crossed module with a given braiding in the category of Lie crossed modules. We also construct the universal central extension of a braided Lie crossed module in the category of braided Lie crossed modules, showing that, when one of these constructions exists, both of them exist and coincide.
___
- [1] R. Brown and J.L. Loday, Van Kampen theorems for diagrams of spaces, Topology,
26 (3), 311–335, 1987.
- [2] J.M. Casas and M. Ladra, Perfect crossed modules in Lie algebras, Comm. Algebra,
23 (5), 1625–1644, 1995.
- [3] J.M. Casas and T. Van der Linden, Universal central extensions in semi-abelian categories, Appl. Categ. Struct. 22 (1), 253–268, 2014.
- [4] D. Conduché, Modules croisés généralisés de longueur 2, J. Pure Appl. Algebra, 34 (2-
3), 155–178, 1984.
- [5] G.J. Ellis, A nonabelian tensor product of Lie algebras, Glasgow Math. J. 33 (1),
101–120, 1991.
- [6] A. Fernández-Fariña and M. Ladra, Braiding for categorical algebras and crossed
modules of algebras I: Associative and Lie algebras, J. Algebra Appl. 19 (9), 2050176,
30 pp., 2020.
- [7] A. Fernández-Fariña and M. Ladra, Braiding for categorical algebras and crossed
modules of algebras II: Leibniz algebras, Filomat, 34 (5), 1443–1469, 2020.
- [8] T. Fukushi, Perfect braided crossed modules and their $mod-q$ analogues, Hokkaido
Math. J. 27 (1), 135–146, 1998.
- [9] S.A. Huq, Commutator, nilpotency and solvability in categories, Quart. J. Math.
Oxford, 2 (19), 363–389, 1968.
- [10] G. Janelidze and G.M. Kelly, Galois theory and a general notion of central extension,
J. Pure Appl. Algebra, 97 (2), 135–161, 1994.
- [11] G. Janelidze, L. Márki and W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra,
168 (2-3), 367–386, 2002.
- [12] A. Joyal and R. Street, Braided monoidal categories, Macquarie Math. Reports No.
860081, 1986.
- [13] K.J. Norrie, Crossed modules and analogues of group theorems, Ph.D. thesis, King’s
College, University of London, 1987.
- [14] E. Ulualan, Braiding for categorical and crossed Lie algebras and simplicial Lie algebras, Turkish J. Math. 31 (3), 239–255, 2007.