Hermite-Hadamard type inequalities for harmonically (α, m)-convex functions
The author introduces the concept of harmonically (α, m)-convex functions and establishes some Hermite-Hadamard type inequalities of these
classes of functions.
___
- Abramowitz M. and Stegun I.A. (Eds.) Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables (Dover, New York, 1965).
- Bakula, M.K., Ozdemir, M. E. and Pecaric, J. Hadamard type inequalities for m-convex
and (α, m)-convex functions, J. Inequal. Pure Appl. Math. 9 (4), Article 96, p. 12, 2008.
- Hudzik, H. and Maligranda, L. Some remarks on s-convex functions, Aequationes Math.
48, 100-111, 1994.
- İşcan, İ. A new generalization of some integral inequalities for (α, m)-convex functions,
Mathematical Sciences 7 (22), 1-8, 2013.
- İşcan, İ. New estimates on generalization of some integral inequalities for (α, m)-convex
functions, Contemp. Anal. Appl. Math. 1 (2), 253-264, 2013.
- İşcan, İ. Hermite-Hadamard type inequalities for functions whose derivatives are (α, m)-
convex, International Journal of Engineering and Applied sciences 2 (3), 69-78, 2013.
- İşcan, İ. Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J.
Math. Stat. 43(6), 935-942, 2014.
- Miheşan, V. G. A generalization of the convexity, Seminer on Functional Equations, Approximation and Convexity, Cluj-Napoca, Romania,1993.
- Ozdemir, M. E., Avcı, M. and Kavurmacı, H. Hermite-Hadamard-type inequalities via
(α, m)-convexity, Comput. Math. Appl. 61, 2614-2620, 2011.
- Ozdemir, M. E., Kavurmacı, H. and Set, E. Ostrowski’s type inequalities for (α, m)-convex
functions, Kyungpook Math. J. 50, 371-378, 2010.
- Ozdemir, M. E., Set, E. and Sarıkaya, M. Z. Some new Hadamard’s type inequalities for
co-ordinated m-convex and (α, m)-convex functions, Hacet. J. Math. Stat. 40 (2), 219-229,
2011.
- Set, E., Sardari, M., Ozdemir, M. E. and Rooin, J. On generalizations of the Hadamard
inequality for (α, m)-convex functions, RGMIA Res. Rep. Coll. 12 (4), Article 4, 2009.