The beta Nadarajah-Haghighi distribution
Recently, there has been a great interest among statisticians and applied researchers in constructing flexible distributions for better modeling
___
- Akinsete, A., Famoye, F. & Lee, C. The beta-Pareto distribution. Statistics 42(6), 547-563,
2008.
- Barreto-Souza, W., Santos, A.H.S. & Cordeiro, G.M. The beta generalized exponential
distribution. Journal of Statistical Computation and Simulation, 80(2), 159-172, 2010.
- Chen, G., Balakrishnan, N. A general purpose approximate goodness-of-fit test. Journal of
Quality Technology, 27, 154-161, 1995.
- Cordeiro, G. M., Lemonte, A. J. The Beta-Birnbaum-Saunders distribution: An improved
distribution for fatigue life modeling. Computational Statistics and Data Analysis, 55, 1445-
1461, 2011.
- Doornik, J. A. Ox 6: Object-oriented matrix programming language. 5th ed. London: Timberlake
Consultants, 2009.
- Eugene, N., Lee, C. & Famoye, F. Beta-normal distribution and its applications. Communications
in Statistics - Theory and Methods, 31, 497-512, 2002.
- Famoye F, Lee C, Olumolade O. The beta-Weibull distribution. Journal of Statistical Theory
and Applications, 54, 121-36, 2008.
- Gradshteyn, I. S., Ryzhik, I. M. Table of Integrals, Series, and Products. Edited by Alan
Jeffrey and Daniel Zwillinger, 7th edn, Academic Press, New York, 2007.
- Gupta, R.C., Gupta, P.L. & Gupta R.D. Modeling failure time data by Lehman alternatives.
Communications in Statistics-Theory and Methods,27, 887-904, 1998.
- Gupta, R.D. & Kundu, D. Generalized exponential distributions. Australian and New
Zealand Journal of Statistics, 41, 173-188, 1999.
- Jones,M.C. Families of distributions arising from distributions of order statistics (with discussion).
Test, 13, 1-43, 2004.
- Kenney, J. F., Keeping, E. S. Mathematics of Statistics (3rd ed.), Part 1. New Jersey, 1962.
- Lemonte, A. A new exponential-type distribution with constant, decreasing, increasing,
upside-down bathtub and bathtub-shaped failure rate function. Computational Statistics
and Data Analysis, 62, 149-170, 2013.
- Lee, E.T. Statistical Methods for Survival Data Analysis. Wiley: New York, 1992.
- Lee, E.T., Wang, J.W.Statistical Methods for Survival Data Analysis, third ed. Wiley, New
York, 2003.
- Lee, C., Famoye, F. & Olumolade, O. Beta-Weibull distribution: Some properties and applications
to censored data. Journal of Modern Applied Statistical Methods, 6(1), 173-186,
2007.
- Moors, J. J. A. A quantile alternative for kurtosis. Journal of the Royal Statistical Society
(Series D), 37, 25-32, 1988.
- Mudholkar, G.S., Srivastava, D.K. & Freimer, M. The exponentiated Weibull family: A
reanalysis of the bus-motor-failure data. Technometrics, 37, 436-445, 1995.
- Nadarajah, S. The exponentiated Gumbel distribution with climate application. Environmetrics,
17, 13-23, 2005.
- Nadarajah, S., Haghighi, F. An extension of the exponential distribution. Statistics: A
Journal of Theoretical and Applied Statistics, 45, 543-558, 2011.
- Nadarajah, S., Kotz, S. The beta Gumbel distribution. Mathematical Problems in Engineering,
10, 323-332, 2004.
- Nadarajah, S., Gupta, A.K. The beta Fréchet distribution. Far East Journal of Theoretical
Statistics, 14, 15-24, 2004.
- Nadarajah, S. & Kotz, S. The beta exponential distribution. Reliability Engineering System
Safety, 91, 689-697, 2006.
- Pescim, R.R., Demétrio, C.G.B., Cordeiro, G.M., Ortega, E.M.M. & Urbano, M.R., 2010.
The beta generalized half-normal distribution. Computational Statistics and Data Analysis,
54, 945-957, 2010.
- Rényi, A., 1961. On measures of information and entropy. Proceedings of the fourth Berkeley
Symposium on Mathematics, Statistics and Probability, 1960, 547-561, 1961.
- Rigby, R. A., Stasinopoulos D. M. Generalized additive models for location, scale and sahpe.
Journal of the Royal Statistical Society: Series C (Applied Statistics), 54, 507-554, 2005.
- Shannon, C.E. Prediction and entropy of printed English. The Bell System Technical Journal,
30, 50-64, 1951.