Resultants of quaternion polynomials

We generalize the concept of resultants to quaternion polynomials and investigate the relationships among resultants, greatest common right divisors and repeated right roots of quaternion polynomials.

___

  • [1] L. Chen, Definition of determinant and Cramer solutions over the quaternion field, Acta Math. Sin. 7 (2), 171-180, 1991.
  • [2] D.A. Cox, J. Little and D. O’Shea, Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra, 10, Springer, 2007.
  • [3] J. Dieudonné, Les déterminants sur un corps non commutatif, Bull. Soc. Math. France 71, 27-45, 1943.
  • [4] A.Lj. Erić, The resultant of non-commutative polynomials, Mat. Vesnik 60, 3-8, 2008.
  • [5] L. Feng and K. Zhao, Classifying zeros of two-sided quaternionic polynomials and computing zeros of two-sided polynomials with complex coefficients, Pac. J. Math. 262 (2), 317-337, 2013.
  • [6] I. Gelfand, S. Gelfand, V. Retakh and R. Lee Wilson, Quasideterminants, Adv. Math. 193 (1), 56-141, 2005.
  • [7] I.I. Kyrchei, Cramer’s rule for quaternionic systems of linear equations, J. Math. Sci. 155 (6), 839-858, 2008.
  • [8] T.Y. Lam, A first course in noncommutative rings, Graduate Texts in Mathematics 131, Springer-Verlag New York, 2001.
  • [9] I. Niven, Equations in quaternions, Amer. Math. Monthly 48 (10), 654-661, 1941.
  • [10] O. Ore, Theory of non-commutative polynomials, Ann. Math. 34 (3), 480–508, 1933.
  • [11] P. Rastall, Quaternions in relativity, Rev. Mod. Phys. 36 (3), 820-832, 1964.
  • [12] K. Shoemake, Animating rotation with quaternion curves, ACM SIGGRAPH Com- puter Graphics 19 (3), 245–254, 1985.
  • [13] G. Song and Q. Wang, Condensed Cramer rule for some restricted quaternion linear equations, Appl. Math. Comput. 218, 3110-3121, 2011.
  • [14] G. Song, Q. Wang and H. Chang, Cramer rule for the unique solution of restricted matrix equations over the quaternion skew fields, Comput. Math. Appl. 61 (6), 1576- 1589, 2011.
  • [15] R. Szeliski, Computer vision: algorithms and applications, Springer, 2011.
  • [16] J. von zur Gathen and J. Gerhard, Modern computer algebra, Cambridge University Press, 2013.