On global universality for zeros of random polynomials

In this work, we study asymptotic zero distribution of random multi-variable polynomials which are random linear combinations $\sum_{j}a_jP_j(z)$ with i.i.d coefficients relative to a basis of orthonormal polynomials $\{P_j\}_j$ induced by a multi-circular weight function $Q$ defined on $\mathbb{C}^m$ satisfying suitable smoothness and growth conditions. In complex dimension $m\geq3$, we prove that $\mathbb{E}[(\log(1+|a_j|))^m]<\infty$ is a necessary and sufficient condition for normalized zero currents of random polynomials to be almost surely asymptotic to the (deterministic) extremal current $\frac{i}{\pi}\partial\overline{\partial}V_{Q}.$ In addition, in complex dimension one, we consider random linear combinations of orthonormal polynomials with respect to a regular measure in the sense of Stahl & Totik and we prove analogous results in this setting.

___

  • T. Bayraktar, Equidistribution of zeros of random holomorphic sections, Indiana Univ. Math. J. 65 (5), 1759–1793, 2016.
  • T. Bayraktar, Asymptotic normality of linear statistics of zeros of random polynomi- als, Proc. Amer. Math. Soc. 145 (7), 2917–2929, 2017.
  • T. Bayraktar, Zero distribution of random sparse polynomials, Michigan Math. J. 66 (2), 389–419, 2017.
  • T. Bayraktar, Expected number of real roots for random linear combinations of or- thogonal polynomials associated with radial weights, Potential Anal. 48 (4), 459–471, 2018.
  • T. Bayraktar, D. Coman and G. Marinescu, Universality results for zeros of random holomorphic sections, to appear in Trans. Amer. Math. Soc., DOI: 10.1090/tran/7807, ArXiv:1709.10346.
  • E. Bogomolny, O. Bohigas, and P. Leboeuf, Quantum chaotic dynamics and random polynomials, J. Statist. Phys. 85 (5-6), 639–679, 1996.
  • R. Berman, Bergman kernels for weighted polynomials and weighted equilibrium mea- sures of $\mathbb{C}^n$, Indiana Univ. Math. J. 58 (4), 1921–1946, 2009.
  • T. Bloom and N. Levenberg, Random Polynomials and Pluripotential-Theoretic Ex- tremal Functions, Potential Anal. 42 (2), 311–334, 2015.
  • T. Bloom, Random polynomials and Green functions, Int. Math. Res. Not. (28), 1689– 1708, 2005.
  • T. Bloom, Random polynomials and (pluri)potential theory, Ann. Polon. Math. 91 (2-3), 131–141, 2007.
  • T. Bloom and B. Shiffman, Zeros of random polynomials on $\mathbb{C}^m$, Math. Res. Lett. 14 (3), 469–479, 2007.
  • J.-D. Deuschel and D. W. Stroock, Large deviations, in: Pure and Applied Mathe- matics, 137, Academic Press, Inc., Boston, MA, 1989.
  • T.-C. Dinh and N. Sibony, Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv. 81 (1), 221–258, 2006.
  • C. G. Esseen, On the concentration function of a sum of independent random vari- ables, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 9, 290–308, 1968.
  • O. Friedland and S. Sodin, Bounds on the concentration function in terms of the Diophantine approximation, C. R. Math. Acad. Sci. Paris 345 (9), 513–518, 2007.
  • J. M. Hammersley, The zeros of a random polynomial, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. II (Berkeley and Los Angeles), University of California Press, pp. 89–111, 1956.
  • C. P. Hughes and A. Nikeghbali, The zeros of random polynomials cluster uniformly near the unit circle, Compos. Math. 144 (3), 734–746, 2008
  • I. Ibragimov and D. Zaporozhets, On distribution of zeros of random polynomials in complex plane, in: Prokhorov and Contemporary Probability Theory, Springer, pp. 303–323, 2013.
  • M. Kac, On the average number of real roots of a random algebraic equation, Bull. Amer. Math. Soc. 49, 314–320, 1943.
  • M. Klimek, Pluripotential theory, in: London Mathematical Society Monographs. New Series, 6, The Clarendon Press, Oxford University Press, New York, 1991.
  • Z. Kabluchko and D. Zaporozhets, Asymptotic distribution of complex zeros of random analytic functions, Ann. Probab. 42 (4), 1374–1395, 2014.
  • J. E. Littlewood and A. C. Offord, On the number of real roots of a random algebraic equation. III, Rec. Math. [Mat. Sbornik] N.S. 12 (54), 277–286, 1943.
  • I. Pritsker and K. Ramachandran, Equidistribution of zeros of random polynomials, J. Approx. Theory 215, 106–117, 2017.
  • R. T. Rockafellar, Convex analysis, Princeton Landmarks in Mathematics, Prince- ton University Press, Princeton, NJ, 1997, Reprint of the 1970 original, Princeton Paperbacks.
  • M. Rudelson and R. Vershynin, The Littlewood-Offord problem and invertibility of random matrices, Adv. Math. 218 (2), 600–633, 2008.
  • M. Rudelson and R. Vershynin, Smallest singular value of a random rectangular ma- trix, Comm. Pure Appl. Math. 62 (12), 1707–1739, 2009.
  • J. Siciak, Extremal plurisubharmonic functions in $C^n$, Ann. Polon. Math. 39, 175– 211, 1981.
  • H. Stahl and V. Totik, General orthogonal polynomials, in: Encyclopedia of Mathe- matics and its Applications, 43, Cambridge University Press, Cambridge, 1992.
  • E. B. Saff and V. Totik, Logarithmic potentials with external fields, in: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci- ences], 316, Springer-Verlag, Berlin, 1997, Appendix B by Thomas Bloom.
  • L. A. Shepp and R. J. Vanderbei, The complex zeros of random polynomials, Trans. Amer. Math. Soc. 347 (11), 4365–4384, 1995.
  • B. Shiffman and S. Zelditch, Distribution of zeros of random and quantum chaotic sections of positive line bundles, Comm. Math. Phys. 200 (3), 661–683, 1999.
  • B. Shiffman and S. Zelditch, Equilibrium distribution of zeros of random polynomials, Int. Math. Res. Not. (1), 25–49. 2003.
  • T. Tao and V. H. Vu, Inverse Littlewood-Offord theorems and the condition number of random discrete matrices, Ann. of Math. 169 (2), 595–632, 2009.