Ladders and fan graphs are cycle-antimagic
A simple graph $G=(V,E)$ admits an~$H$-covering if every edge in $E$ belongs to at least one subgraph of $G$ isomorphic to a given graph $H$. The graph $G$ admitting an $H$-covering is $(a,d)$-$H$-antimagic if there exists a~bijection $f:V\cup E\to\{1,2,\cdots,|V|+|E|\}$ such that, for all subgraphs $H'$ of $G$ isomorphic to $H$, the $H'$-weights, $wt_f(H')= \sum_{v\in V(H')} f(v) + \sum_{e\in E(H')} f(e)$, form an~arithmetic progression with the initial term $a$ and the common difference $d$. Such a labeling is called {\it super} if the smallest possible labels appear on the vertices. In this paper we prove the existence of super $(a,d)$-$H$-antimagic labelings of fan graphs and ladders for $H$ isomorphic to a cycle.
___
- [1] A. Ahmad, M. Bača, M. Lascsáková and A. Semaničová–Feňovčíková, Super magic
and antimagic labelings of disjoint union of plane graphs, Sci. Int. 24 (1), 21–25, 2012.
- [2] S. Arumugam, M. Miller, O. Phanalasy and J. Ryan, Antimagic labeling of generalized
pyramid graphs, Acta Math. Sinica - English Series, 30, 283–290, 2014.
- [3] M. Bača, L. Brankovic and A. Semaničová-Feňovčíková, Labelings of plane graphs
containing Hamilton path, Acta Math. Sinica - English Series, 27 (4), 701–714, 2011.
- [4] M. Bača, Z. Kimáková, A. Semaničová-Feňovčíková and M.A. Umar, Tree-antimagicness
of disconnected graphs, Mathematical Problems in Engineering, 2015,
Article ID 504251, 1–4, 2015.
- [5] M. Bača and M. Miller, Super edge-antimagic graphs: A wealth of problems and some
solutions, Brown Walker Press, Boca Raton, Florida, 2008.
- [6] M. Bača, M. Miller, O. Phanalasy and A. Semaničová-Feňovčíková, Super d-antimagic
labelings of disconnected plane graphs, Acta Math. Sinica - English Series, 26 (12),
2283–2294, 2010.
- [7] M. Bača, M. Miller, J. Ryan and A. Semaničová-Feňovčíková, On H-antimagicness
of disconnected graphs, Bull. Aust. Math. Soc. 94 (2), 201–207, 2016.
- [8] M. Bača, A. Ovais, A. Semaničová-Feňovčíková and M.A. Umar, Fans are cycleantimagic,
Australas. J. Combin. 68 (1), 94–105, 2017.
- [9] H. Enomoto, A.S. Lladó, T. Nakamigawa and G. Ringel, Super edge-magic graphs,
SUT J. Math. 34, 105–109, 1998.
- [10] A. Gutiérrez and A.S. Lladó, Magic coverings, J. Combin. Math. Combin. Comput.
55, 43–56, 2005.
- [11] N. Inayah, A.N.M. Salman and R. Simanjuntak, On (a, d)-H-antimagic coverings of
graphs, J. Combin. Math. Combin. Comput. 71, 273–281, 2009.
- [12] N. Inayah, R. Simanjuntak, A.N.M. Salman and K.I.A. Syuhada, On (a, d)-Hantimagic
total labelings for shackles of a connected graph H, Australasian J. Combin.
57, 127–138, 2013.
- [13] P. Jeyanthi, N.T. Muthuraja, A. Semaničová-Feňovčíková and S.J. Dharshikha, More
classes of super cycle-antimagic graphs, Australas. J. Combin. 67 (1), 46–64, 2017.
- [14] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13,
451–461, 1970.
- [15] A. Lladó and J. Moragas, Cycle-magic graphs, Discrete Math. 307, 2925–2933, 2007.
- [16] K.W. Lih, On magic and consecutive labelings of plane graphs, Utilitas Math. 24,
165–197, 1983.
- [17] A.M. Marr and W.D. Wallis, Magic Graphs, Birkhäuser, New York, 2013.
- [18] T.K. Maryati, A.N.M. Salman and E.T. Baskoro, Supermagic coverings of the disjoint
union of graphs and amalgamations, Discrete Math. 313, 397–405, 2013.
- [19] T.K. Maryati, A.N.M. Salman, E.T. Baskoro, J. Ryan and M. Miller, On Hsupermagic
labelings for certain shackles and amalgamations of a connected graph,
Utilitas Math. 83, 333–342, 2010.
- [20] A.A.G. Ngurah, A.N.M. Salman and L. Susilowati, H-supermagic labelings of graphs,
Discrete Math. 310, 1293–1300, 2010.
- [21] A.N.M. Salman, A.A.G. Ngurah and N. Izzati, On (super)-edge-magic total labelings
of subdivision of stars Sn, Utilitas Math. 81, 275–284, 2010.
- [22] A. Semaničová–Feňovčíková, M. Bača, M. Lascsáková, M. Miller and J. Ryan, Wheels
are cycle-antimagic, Electron. Notes Discrete Math. 48, 11–18, 2015.
- [23] R. Simanjuntak, M. Miller and F. Bertault, Two new (a, d)-antimagic graph labelings,
Proc. Eleventh Australas. Workshop Combin. Alg. (AWOCA), 179–189, 2000.