Almost h-conformal semi-invariant submersions from almost quaternionic Hermitian manifolds

As a generalization of Riemannian submersions, horizontally conformal submersions, semi-invariant submersions, h-semi-invariant submersions, almost h-semi-invariant submersions, conformal semi-invariant submersions, we introduce h-conformal semi-invariant submersions and almost h-conformal semi-invariant submersions from almost quaternionic Hermitian manifolds onto Riemannian manifolds. We study their properties: the geometry of foliations, the conditions for total manifolds to be locally product manifolds, the conditions for such maps to be totally geodesic. Finally, we give some examples of such maps.

___

  • [1] M.A. Akyol and B. Sahin, Conformal anti-invariant submersions from almost Her- mitian manifolds, Turkish J. Math. 40 (1), 43–70, 2016.
  • [2] M.A. Akyol and B. Sahin, Conformal semi-invariant submersions, Commun. Con- temp. Math. 19 (2), 1650011, 2017.
  • [3] D.V. Alekseevsky and S. Marchiafava, Almost complex submanifolds of quaternionic manifolds, In: Proceedings of the colloquium on differential geometry, Debrecen (Hun- gary), 25-30 July 2000, Inst. Math. Inform. Debrecen, 23-38, 2001.
  • [4] P. Baird and J.C. Wood, Harmonic morphisms between Riemannian manifolds, Ox- ford Science Publications, 2003.
  • [5] M. Barros, B.Y. Chen and F. Urbano, Quaternion CR-submanifolds of quaternion manifolds, Kodai Math. J. 4, 399–417, 1980.
  • [6] A.L. Besse, Einstein manifolds, Springer Verlag, Berlin, 1987.
  • [7] J.P. Bourguignon and H.B. Lawson, Stability and isolation phenomena for Yang-mills fields, Commum. Math. Phys. 79, 189–230, 1981.
  • [8] J.P. Bourguignon and H.B. Lawson, A mathematician’s visit to Kaluza-Klein theory, Rend. Semin. Mat. Torino Fasc. Spec. 1989, 143–163, 1989.
  • [9] B.Y. Chen, Geometry of slant submanifolds, Katholieke Universiteit Leuven, Leuven, 1990.
  • [10] V. Cortés, C. Mayer, T. Mohaupt and F. Saueressig, Special geometry of Euclidean supersymmetry 1. Vector multiplets, J. High Energy Phys. 3, 028, 2004.
  • [11] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16, 715–737, 1967.
  • [12] S. Gudmundsson, The geometry of harmonic morphisms, Ph.D. thesis, University of Leeds, 1992.
  • [13] M. Falcitelli, S. Ianus and A.M. Pastore, Riemannian submersions and related topics, World Scientific Publishing Co., 2004.
  • [14] B. Fuglede, Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble), 28 (2), 107–144, 1978.
  • [15] S. Ianus, R. Mazzocco and G.E. Vilcu, Riemannian submersions from quaternionic manifolds, Acta. Appl. Math. 104, 83–89, 2008.
  • [16] S. Ianus and M. Visinescu, Kaluza-Klein theory with scalar fields and generalized Hopf manifolds, Class. Quantum Gravity, 4, 1317–1325, 1987.
  • [17] S. Ianus and M. Visinescu, Space-time compactification and Riemannian submersions, In: Rassias, G.(ed.) The Mathematical Heritage of C. F. Gauss, 358-371, World Scientific, River Edge, 1991.
  • [18] T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto University, 19 (2), 215–229, 1979.
  • [19] M.T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys. 41 (10), 6918–6929, 2000.
  • [20] B. O’Neill, The fundamental equations of a submersion, Michigan Math. J. 13, 458– 469, 1966.
  • [21] K.S. Park, H-semi-invariant submersions, Taiwanese J. Math. 16 (5), 1865–1878, 2012.
  • [22] K.S. Park, H-anti-invariant submersions from almost quaternionic Hermitian mani- folds, Czechoslovak Math. J. 67 (142), 557–578, 2017.
  • [23] K.S. Park and R. Prasad, Semi-slant submersions, Bull. Korean Math. Soc. 50 (3), 951–962, 2013.
  • [24] B. Sahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Cent. Eur. J. Math. 8 (3), 437–447, 2010.
  • [25] B. Sahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie Tome, 54(102) (1), 93–105, 2011.
  • [26] B. Sahin, Semi-invariant submersions from almost Hermitian manifolds, Canad. Math. Bull. 56 (1), 173–183, 2013.
  • [27] B. Sahin, Riemannian submersions from almost Hermitian manifolds, Taiwanese J. Math. 17 (2), 629–659, 2013.
  • [28] H. Urakawa, Calculus of variations and harmonic maps, Translations of Mathematical Monographs, Amer. Math. Soc. 2013.
  • [29] B.Watson, Almost Hermitian submersions, J. Differential Geometry, 11 (1), 147–165, 1976.
  • [30] B. Watson, $G,G'$-Riemannian submersions and nonlinear gauge field equations of general relativity, in: Rassias, T. (ed.) Global Analysis - Analysis on manifolds, ded- icated M. Morse. Teubner-Texte Math., 57, 324–349, Teubner, Leipzig, 1983.