$S$-spectra and $S$-essential pseudospectra of the diagonal block operator matrices

In this article, the relationships between the $S$-spectra, the $ S$-spectral radius, the $ \epsilon$-$S$-essential pseudospectra, and the $ \epsilon$-$S$-essential pseudospectral radius of the diagonal block operator matrices in the direct sum of Banach spaces and their block coordinate operators are studied. Then, the results are supported by applications.

___

  • [1] F. Abdmouleh, A. Ammar and A. Jeribi, Characterization of the pseudo-browder es- sential spectra of linear operators and application to a transport equation, J. Comput. Theor. Transp. 44 (3), 141-153, 2015.
  • [2] N. Dunford and J.T. Schwartz, Linear operators II, Interscience, 1963.
  • [3] K. Gustafson and J. Weidmann, On the essential spectrum, J. Math. Anal. Appl. 25, 121-127, 1969.
  • [4] A. Jeribi, Spectral Theory and Applications of Linear Operators and Block Operator Matrices, Springer-Verlag, 2015.
  • [5] A. Jeribi, Linear Operators and Their Essential Pseudospectra, Apple Academic Press, 2018.
  • [6] Z.I. Ismailov, Multipoint normal differential operators for first order, Opuscula Math. 29 (4), 399–414, 2009.
  • [7] Z.I. Ismailov, L. Cona and E. Otkun Çevik, Gelfand numbers of diagonal matrices, Hacet. J. Math. Stat. 44 (1), 75-81, 2015.
  • [8] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, 1980.
  • [9] A.N. Kochubei, Symmetric operators and nonclassical spectral problems, Mat. Za- metki. 25 (3), 425–434, 1979.
  • [10] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Sequence Spaces, Springer-Verlag, 1977.
  • [11] R. Mennicken and A.K. Motovilov, Operator interpretation of resonances arising in spectral problems for 2 × 2 operator matrices, Math. Nachr. 201, 117-181, 1999.
  • [12] E. Otkun Çevik and Z.I. Ismailov, Spectrum of the direct sum of operators, Electron. J. Differential Equations, 210, 1–8, 2012.
  • [13] M. Schechter, On the essential spectrum of an arbitrary operator, I. J. Math. Anal. Appl. 13, 205-215, 1966.
  • [14] S. Timoshenko, Theory of Elastic Stability, McGraw-Hill Book Co, 1961.
  • [15] C. Tretter, Spectral Theory of Block Operator Matrices and Applications, Imperial College Press, 2008.
  • [16] H. Weyl, Uber beschrankte quadratische Formen, deren differenz vollstelig ist, Rend. Circ. Mat. Palermo, 27, 373-392, 1909.
  • [17] A. Zettl, Sturm-Lioville Theory, Mathematical Surveys and Monographs, American Mathematical Society, 2005.