Star versions of Hurewicz spaces
A space $X$ is said to have the set star Hurewicz property if for each nonempty subset $A$ of $X$ and each sequence $(\mathcal{U}_n: n\in \mathbb{N})$ of collections of sets open in $X$ such that for each $n\in \mathbb N$, $\overline{A} \subset \cup \mathcal{U}_n$, there is a sequence $(\mathcal{V}_n: n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, $\mathcal{V}_n$ is a finite subset of $\mathcal{U}_n$ and for each $x \in A$, $x \in {\rm St}(\cup\mathcal{V}_n, \mathcal{U}_n)$ for all but finitely many $n$. In this paper, we investigate the relationships among set star Hurewicz, set strongly star Hurewicz and other related covering properties and study the topological properties of these topological spaces.
___
- [1] A.V. Arhangel’kii, A generic theorem in the theory of cardinal invariants of topological
spaces, Comment. Math. Univ. Carol. 36, 303–325, 1995.
- [2] M. Bonanzinga and M.V. Matveev, Some covering properties for ψ-spaces, Mat. Vesnik
61, 3–11, 2009.
- [3] M. Bonanzinga, F. Cammaroto and Lj.D.R. Kočinac, Star-Hurewicz and related properties,
Appl. Gen. Topol. 5, 79–89, 2004.
- [4] G. Di Maio and Lj.D.R. Kočinac, A note on quasi-Menger and similar spaces, Topology
Appl. 179, 148–155, 2015.
- [5] E.K. van Douwen, G.K. Reed, A.W. Roscoe and I.J. Tree, Star covering properties,
Topology Appl. 39, 71–103, 1991.
- [6] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [7] W. Hurewicz, Über die Verallgemeinerung des Borelshen Theorems, Math. Z. 24,
401–425, 1925.
- [8] W. Hurewicz, Über Folgen stetiger Functionen, Fund. Math. 9, 193–204, 1927.
- [9] Lj.D.R. Kočinac, Star-Menger and related spaces, Publ. Math. Debrecen 55, 421–431,
1999.
- [10] Lj.D.R. Kočinac, Star-Menger and related spaces II, Filomat 13, 129–140, 1999.
- [11] Lj.D.R. Kočinac, Addendum to: “Variations of classical selection principles: an
overview", Quaest. Math., 2020. DOI: 10.2989/16073606.2020.1779501
- [12] Lj,D.R. Kočinac and Ş. Konca, Set-Menger and related properties, Topology Appl.
275, Article No. 106996, 2020.
- [13] Lj.D.R. Kočinac, Ş. Konca and S. Singh, Set star-Menger and set strongly star-Menger
spaces, Math. Slovaca, in press.
- [14] M.V. Matveev, A survey on star covering properties, Topology Atlas, Preprint No.
330, 1998.
- [15] S. Mrówka, On completely regular spaces, Fund. Math. 41, 105–106, 1954.
- [16] S. Singh, Remarks on set-Menger and related properties, Topology Appl. 280, Art.
No. 107278, 2020.
- [17] Y.K. Song, Remarks on strongly star-Hurewicz spaces, Filomat 27, 1127–1131, 2013.
- [18] Y.K. Song, Remarks on star-Hurewicz spaces, Bull. Polish Acad. Sci. Math. 61, 247–
255, 2013.
- [19] Y.K. Song, On star-K-Hurewicz spaces, Filomat 31, 1129–1285, 2017.
- [20] Y.K. Song and Y.Y. Zhang, Some remarks on almost Lindelöf spaces and weakly
Lindelöf spaces, Mat. Vesnik 62, 77–83, 2010.
- [21] L.A. Steen and J.A. Seebach, Counterexamples in Topology, Dover Publications Inc.,
1996.