Katyonik Poliamidoamin PAMAM Dendrimerlerin Yüzey Modifikasyonları

P AMAM dendrimerler, makromoleküler polimelerin yeni bir sınıfı olarak, çok dallı ve üç boyutlu yapıları aracılığıyla yüksek derecede yüzey fonksiyonelliği ve çok yönlülük sağlar. Bu nanoküresel polimerler, kendilerini ilaç taşıma ve gen aktarımı için potansiyel hale getiren seçkin özelliklere sahiptir. PAMAM dendrimerlerin, fonksiyonel grupların boyutu, şekli ve yerleşimi konusunda kesin kontrol sağlaması, birçok yaşam bilim uygulamaları tarafından kullanımlarının istenmesine neden olmuştur. Fakat, yüzeylerindeki pozitif yük, katyonik PAMAM dendrimerlere sitotoksite vererek, klinik kullanımlarını sınırlandırmaktadır. Dendrimer yüzey gruplarının modifikasyonu, toksisiteyi azaltmak ve biyouyumluluğu geliştirmek amacıyla uygulanan mevcut yöntemlerden biridir. Bu derlemede ilk olarak PAMAM dendrimerlerin özellikleri ve yapısı hakkında kısa bir açıklama sağlanmıştır. Daha sonrasında ise PAMAM dendrimerlerin sitotoksisitesini azaltılmak amaçlı çeşitli modifikasyon yöntemleri sunulmuş ve tartışılmıştır

Surface Modifications of Cationic Polyamidoamine PAMAM Dendrimers

PAMAM dendrimers are a new class of macromolecular polymers, with a highly branched three-dimensional structure that provides a high degree of surface functionality and versatility. These nanospherical polymers possess exclusive properties which make them potential carriers for drug and gene delivery. PAMAM dendrimers allow the precise control of size, shape and placement of functional groups that is desirable for many life science applications. However, positive charge at the surface renders cytotoxicity to the cationic PAMAM dendrimers, which limits their clinical usefulness. Modification of dendrimer surface groups is one of the methods available in order to reduce the toxicity and improve their biocompatibility. In this review, firstly a brief description is provided about the characteristics and structure of PAMAM dendrimers. Then, various modification routes with the aim of decreasing the cytotoxicity of PAMAM dendrimers are presented and discussed.

___

  • 1. T.C. Wan, D.K. Tosh, L. Du, E.T. Gizewski, K.A. Jacobson, J.A. Auchampach, Polyamidoamine (PAMAM) dendrimer conjugate specifically activates the A3 adenosine receptor to improve post-ischemic/ reperfusion function in isolated mouse hearts, BMC Pharmacol., 11 (2011) 11.
  • 2. A. Kumar, V.K. Yellepeddi, G.E. Davies, K.B. Strychar, S. Palakurthi, Enhanced gene transfection efficiency by polyamidoamine (PAMAM) dendrimers modified with ornithine residues, Int. J. Pharm., 392 (2010) 294.
  • 3. M. Labieniec, C. Watala, PAMAM dendrimers — diverse biomedical applications. Facts and unresolved questions, Cent. Eur. J. Biol., 4 (2009) 434.
  • 4. N. Taghavi Pourianazar, P. Mutlu, U. Gunduz, Bioapplications of poly(amidoamine) (PAMAM) dendrimers in nanomedicine, J. Nanoparticle Res., 16 (2014) 1.
  • 5. T. Zhong, P. Ai, J. Zhou, Structures and properties of PAMAM dendrimer: A multi-scale simulation study, Fluid Phase Equilibria, 302 (2011) 43.
  • 6. N. Taghavi Pourianazar, P. Mutlu, R. Khodadust, U. Gunduz,. Poly(amidoamine) (PAMAM) nanoparticles: Synthesis and biomedical applications, Hacettepe J. Biol. & Chem., 41 (2013) 289.
  • 7. J.D. Eichman, A.U. Bielinska, J.F. Kukowska-Latallo, J.R. Baker Jr, The use of PAMAM dendrimers in the efficient transfer of genetic material into cells, Pharm. Sci. Technol. Today, 3 (2000) 232.
  • 8. D.A. Tomalia, Starburst/cascade dendrimers: Fundamental building blocks for a new nanoscopic chemistry set, Adv. Mater., 6 (1994) 529.
  • 9. R.W.J. Scott, O. M. Wilson, R.M. Crooks, Synthesis, characterization, and applications of dendrimerencapsulated nanoparticles, J. Phys. Chem. B, 109 (2005) 692.
  • 10. C.S. Braun, J. A. Vetro, D. A. Tomalia, G. S. Koe, J. G. Koe, C. Russell Middaugh, Structure/function relationships of polyamidoamine/DNA dendrimers as gene delivery vehicles, J. Pharm. Sci., 94 (2005) 423.
  • 11. A. Buczkowski, P. Urbaniak, B. Palecz, Thermochemical and spectroscopic studies on the supramolecular complex of PAMAM-NH2 G4 dendrimer and 5-fluorouracil in aqueous solution, Int. J. Pharm., 428 (2012) 178.
  • 12. P.K. Maiti, T. Çaǧın, S.-T. Lin, W.A. Goddard, Effect of solvent and pH on the structure of PAMAM dendrimers, Macromolecules, 38 (2005) 979.
  • 13. K. Inoue, Functional dendrimers, hyperbranched and star polymers, Prog. Polym. Sci., 25 (2000) 453.
  • 14. Y. Sayed-Sweet, D.M. Hedstrand, R. Spinder, D.A. Tomalia, Hydrophobically modified poly(amidoamine) (PAMAM) dendrimers: theirproperties at the air–water interface and use as nanoscopiccontainer molecules, J. Mater. Chem., 7 (1997) 1199.
  • 15. M.L. Patil, M. Zhang, S. Betigeri, O. Taratula, H. He, T. Minko, Surface-modified and internally cationic polyamidoamine dendrimers for efficient siRNA delivery, Bioconjug. Chem., 19 (2008) 1396.
  • 16. S. Sadekar, H. Ghandehari, Transepithelial transport and toxicity of PAMAM dendrimers: Implications for oral drug delivery, Adv. Drug Deliv. Rev., 64 (2012) 571.
  • 17. Q. Yuan, W.A. Yeudall, H. Yang, PEGylated polyamidoamine dendrimers with bis-aryl hydrazone linkages for enhanced gene delivery, Biomacromolecules, 11 (2010) 1940.
  • 18. F. M. Veronese, A. Mero, The impact of PEGylation on biological therapies, BioDrugs, 22 (2008) 315.
  • 19. F. M. Veronese, G. Pasut, PEGylation, successful approach to drug delivery, Drug Discov. Today, 10 (2005) 1451.
  • 20. D. Bhadra, S. Bhadra, S. Jain, N.K. Jain, A PEGylated dendritic nanoparticulate carrier of fluorouracil, Int. J. Pharm., 257 (2003) 111.
  • 21. R. Jevprasesphant, J. Penny, R. Jalal, D. Attwood, N.B. McKeown, A. D’Emanuele, The influence of surface modification on the cytotoxicity of PAMAM dendrimers, Int. J. Pharm., 252 (2003) 263.
  • 22. W. Wang, W. Xiong, J. Wan, X. Sun, H. Xu, X. Yang, The decrease of PAMAM dendrimer-induced cytotoxicity by PEGylation via attenuation of oxidative stress, Nanotechnology, 20 (2009)105.
  • 23. Y. Haba, C. Kojima, A. Harada, T. Ura, H. Horinaka, K. Kono, Preparation of Poly(ethylene glycol)-modified poly(amido amine) dendrimers encapsulating gold nanoparticles and their heat-generating ability, Langmuir, 23 (2007) 5243.
  • 24. R. Qi, Y. Gao, Y. Tang, R.R. He, T.L. Liu, Y. He, S. Sun, B.-Y. Li, Y.-B. Li, G. Liu, PEG-conjugated PAMAM dendrimers mediate efficient intramuscular gene expression, AAPS J., 11 (2009) 395.
  • 25. D. Luo, K. Haverstick, N. Belcheva, E. Han, W.M. Saltzman, Poly(ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery, Macromolecules, 35 (2002) 3456.
  • 26. T. Kim, H.J. Seo, J.S. Choi, H.S. Jang, J. Baek, K. Kim, J.S. Park, PAMAM-PEG-PAMAM: Novel triblock copolymer as a biocompatible and efficient gene delivery carrier, Biomacromolecules, 5 (2004) 2487.
  • 27. P. Singh, U. Gupta, A. Asthana, N.K. Jain, Folate and Folate−PEG−PAMAM Dendrimers: Synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice, Bioconjug. Chem., 19 (2008) 2239.
  • 28. I.J. Majoros, B. Keszler, S. Woehler, T. Bull, J.R. Baker, Acetylation of poly(amidoamine) dendrimers, Macromolecules, 36 (2003) 5526.
  • 29. R.B. Kolhatkar, K.M. Kitchens, P.W. Swaan, H. Ghandehari, Surface acetylation of polyamidoamine (PAMAM) dendrimers decreases cytotoxicity while maintaining membrane permeability, Bioconjug. Chem., 18 (2007) 2054.
  • 30. C.L. Waite, S.M. Sparks, K.E. Uhrich, C.M. Roth, Acetylation of PAMAM dendrimers for cellular delivery of siRNA, BMC Biotechnol., 9 (2009) 38.
  • 31. D. Chandrasekar, R. Sistla, F.J. Ahmad, R.K. Khar, P.V. Diwan, Folate coupled poly(ethyleneglycol) conjugates of anionic poly(amidoamine) dendrimer for inflammatory tissue specific drug delivery, J. Biomed. Mater. Res. A, 82 (2007) 92.
  • 32. Y. Wang, X. Cao, R. Guo, M. Shen, M. Zhang, M. Zhu, X. Shi, Targeted delivery of doxorubicin into cancer cells using a folic acid–dendrimer conjugate, Polym. Chem., 2 (2011) 1754.
  • 33. Y. Chang, N. Liu, L. Chen, X. Meng, Y. Liu, Y. Li, J. Wang, Synthesis and characterization of DOX-conjugated dendrimer-modified magnetic iron oxide conjugates for magnetic resonance imaging, targeting, and drug delivery, J. Mater. Chem., 22 (2012) 9594.
  • 34. D. Chandrasekar, R. Sistla, F. J. Ahmad, R.K. Khar, P.V. Diwan, The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats, Biomaterials, 28 (2007) 504.
  • 35. R. Hemmer, A. Hall, R. Spaulding, B. Rossow, M. Hester, M. Caroway, A. Haskamp, S. Wall, H. A. Bullen, C. Morris, K. L. Haik, Analysis of biotinylated generation 4 poly(amidoamine) (PAMAM) dendrimer distribution in the rat brain and toxicity in a cellular model of the blood-brain barrier, Molecules, 18 (2013) 11537.
  • 36. V.K. Yellepeddi, A. Kumar, S. Palakurthi, Biotinylated poly(amido)amine (PAMAM) dendrimers as carriers for drug delivery to ovarian cancer cells in vitro, Anticancer Res., 29 (2009) 2933.
  • 37. K.M. Kitchens, R.B. Kolhatkar, P.W. Swaan, H. Ghandehari, Endocytosis inhibitors prevent poly(amidoamine) dendrimer internalization and permeability across Caco-2 cells, Mol. Pharm., 5 (2008) 364.
  • 38. R.S. Navath, A.R. Menjoge, B. Wang, R. Romero, S. Kannan, R.M. Kannan, Amino acid-functionalized dendrimers with heterobifunctional chemoselective peripheral groups for drug delivery applications, Biomacromolecules, 11 (2010) 1544.
  • 39. J.H. Park, J.S. Park, J.S. Choi, Basic amino acidconjugated polyamidoamine dendrimers with enhanced gene transfection efficiency, Macromol. Res., 22 (2014) 500.
  • 40. A. Kumar, V. K. Yellepeddi, K. K. Vangara, K. B. Strychar, S. Palakurthi, Mechanism of gene transfection by polyamidoamine (PAMAM) dendrimers modified with ornithine residues, J. Drug Target., 19 (2011) 770.
  • 41. H. Kang, R. DeLong, M.H. Fisher, R.L. Juliano, Tatconjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides, Pharm. Res., 22 (2005) 2099.
  • 42. S.J. Son, G.S. Yu, Y. H. Choe, Y.J. Kim, E. Lee, J.S. Park, J. S. Choi, PAMAM dendrimers conjugated with L-arginine and -aminobutyric acid as novel polymeric gene delivery carriers, Bull. Korean Chem. Soc., 34 (2013) 579.
  • 43. T. Kim, C.Z. Bai, K. Nam, J. Park, Comparison between arginine conjugated PAMAM dendrimers with structural diversity for gene delivery systems, J. Controlled Release, 136 (2009) 132.
  • 44. C. Liu, X. Liu, P. Rocchi, F. Qu, J.L. Iovanna, L. Peng, Arginine-terminated generation 4 PAMAM dendrimer as an effective nanovector for functional siRNA delivery in vitro and in vivo, Bioconjug. Chem., 25 (2014) 521.
  • 45. J.S. Choi, K. Nam, J. Park, J.B. Kim, J.K. Lee, J. Park, Enhanced transfection efficiency of PAMAM dendrimer by surface modification with l-arginine, J. Controlled Release, 99 (2004) 445.
  • 46. H.Y. Nam, H.J. Hahn, K. Nam, W.H. Choi, Y. Jeong, D.E. Kim, J.S. Park, Evaluation of generations 2, 3 and 4 arginine modified PAMAM dendrimers for gene delivery, Int. J. Pharm., 363 (2008) 199.
  • 47. D.S. Pisal, V.K. Yellepeddi, A. Kumar, R.S. Kaushik, M.B. Hildreth, X. Guan, S. Palakurthi, Permeability of surface-modified polyamidoamine (PAMAM) dendrimers across Caco-2 cell monolayers, Int. J. Pharm., 350 (2008) 113.
  • 48. K. Kono, H. Akiyama, T. Takahashi, T. Takagishi, A. Harada, Transfection activity of Polyamidoamine dendrimers having hydrophobic amino acid residues in the periphery, Bioconjug. Chem., 16 (2005) 208.
  • 49. A. Saovapakhiran, A. D’Emanuele, D. Attwood, J. Penny, Surface modification of PAMAM dendrimers modulates the mechanism of cellular internalization, Bioconjug. Chem., 20 (2009) 693.
  • 50. M. Ciolkowski, J.F. Petersen, M. Ficker, A. Janaszewska, J. B. Christensen, B. Klajnert, M. Bryszewska, Surface modification of PAMAM dendrimer improves its biocompatibility, Nanomedicine Nanotechnol. Biol. Med., 8 (2012) 815.
  • 51. A. Janaszewska, M. Ciolkowski, D. Wróbel, J.F. Petersen, M. Ficker, J.B. Christensen, M. Bryszewska, B. Klajnert, Modified PAMAM dendrimer with 4-carbomethoxypyrrolidone surface groups reveals negligible toxicity against three rodent cell-lines, Nanomedicine Nanotechnol. Biol. Med., 9 (2013) 461.
Hacettepe Journal of Biology and Chemistry-Cover
  • ISSN: 2687-475X
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1972
  • Yayıncı: Hacettepe Üniversitesi, Fen Fakültesi