Preparation and Investigation of Antibacterial Activities of Ciprofloxacin Imprinted p(HEMAH) Cryogels

Staphylococcus aureus, Enterococcus faecalis and Escherichia coli are the common causes of wound infections. For the treatment of these infections, ciprofloxacin can be recommended as a broad-spectrum antibiotic that acts on both Gram-negative and Gram-positive microorganisms. Besides, antimicrobial agents could be integrated into polymeric materials. Cryogels, one of these polymeric materials, are spongy polymers showing high macroporosity. In addition to their attractive usage as affinity support materials and scaffolds, they also appear as drug carrier materials in recent years. Molecular imprinting method is a recognition technique prepared by forming a polymeric network around the template. Although this method has been used in purification and separation processes for more than thirty years, it has gained great interest as a new approach that provides an advantage in drug release studies in terms of high drug loading capacity and long-term release. In this study, ciprofloxacin (CIP) imprinted 2-Hydroxyethyl methacrylate (HEMA) based N-methacryloyl-(L)-histidine methyl ester (MAH) containing [CIP-p(HEMAH)] cryogels was prepared and characterized. CIP releasing experiments were performed, and then, antimicrobial activities of CIP p(HEMAH) cryogels were examined against S. aureus, E. faecalis and E. coli. It can be concluded that CIP-p(HEMAH) cryogels could be proposed as promising polymeric materials for wound healing applications.

___

  • References 1. I. Negut, V. Grumezescu, A. Grumezescu, Treatment Strategies for Infected Wounds, Molecules, 23 (2018) 2392.
  • 2. R. Edwards, K.G. Harding, Bacteria and wound healing, Curr. Opin. Infect. Dis., 17 (2004) 91-96 .
  • 3. N. Sultana, P. Bora, B. Sarma, Nanocarriers in drug delivery system: Eminence and confront, in Smart Nanocontainers: Micro and Nano Technologies, Elsevier, (2019) 159-78.
  • 4. M. Li, Z. Zhang, Y. Liang, J. He, B. Guo, Multifunctional Tissue-Adhesive Cryogel Wound Dressing for Rapid Nonpressing Surface Hemorrhage and Wound Repair, ACS Appl. Mater. Interfaces, 12 (2020) 35856-35872.
  • 5. K. Çetin, S. Aslıyüce, N. Idil, A. Denizli, Preparation of lysozyme loaded gelatin microcryogels and investigation of their antibacterial properties, J. Biomater. Sci. Polym. Ed., 32 (2021) 189-204.
  • 6. S. Hou, Y. Liu, F. Feng, J. Zhou, X. Feng, Y. Fan, Polysaccharide‐Peptide Cryogels for Multidrug‐Resistant‐Bacteria Infected Wound Healing and Hemostasis, Adv. Healthc. Mater., 9 (2020) 1901041.
  • 7. P. Arvidsson, F. Plieva, I. Savina, V.I. Lozinsky, S. Fexby, I.Y. Galaev, B. Mattiasson, Chromatography of microbial cells using continuous supermacroporous affinity and ion-exchange columns, J Chromatogr. A, 977 (2002) 27-38.
  • 8. M. Bakhshpour, N. Idil, I. Perçin, A. Denizli, Biomedical Applications of Polymeric Cryogels, Appl. Sci., 9 (2019) 553.
  • 9. V.I. Lozinsky, F.M. Plieva, I.Y. Galaev, B. Mattiasson, The potential of polymeric cryogels in bioseparation, Bioseparation, 10 (2001) 163-188.
  • 10. E. Oyarce, G.D.C. Pizarro, D.P. Oyarzún, C. Zúñiga, J. Sánchez, Hydrogels based on 2-hydroxyethyl methacrylate: Synthesis, characterization and hydration capacity, J. Chil. Chem. Soc., 65 (2020) 4682-4685.
  • 11. T. Goda, K. Ishihara, Soft contact lens biomaterials from bioinspired phospholipid polymers, Expert Rev. Med. Devices. 3 (2006) 167-174.
  • 12. S. Asliyüce, N. Bereli, L. Uzun, M.A. Onur, R. Say, A. Denizli, Ion-imprinted supermacroporous cryogel, for in vitro removal of iron out of human plasma with beta thalassemia, Sep. Purif. Technol., 73 (2010) 243-249.
  • 13. T.L. Tsou, S.T. Tang, Y.C. Huang, J.R.Wu, J.J. Young, H.J. Wang, Poly(2-hydroxyethyl methacrylate) wound dressing containing ciprofloxacin and its drug release studies, J. Mater. Sci. Mater. Med., 16 (2005) 95-100.
  • 14. H. Ayhan, F. Ayhan, Water based PHEMA hydrogels for controlled drug delivery, Turkish J. Biochem., 43 (2018) 228-239.
  • 15. X. Lou, S. Munro, S. Wang, Drug release characteristics of phase separation pHEMA sponge materials, Biomaterials, 25 (2004) 5071-5080.
  • 16. D. Nguyen, A. Hui, A. Weeks, M. Heynen, E. Joyce, H. Sheardown, L. Jones, Release of Ciprofloxacin-HCl and Dexamethasone Phosphate by Hyaluronic Acid Containing Silicone Polymers, Materials, 5 (2012) 684-698.
  • 17. S.A. Zaidi, Molecular imprinting: A useful approach for drug delivery. Mater. Sci. Energy Technol., 3 (2020) 72-77.
  • 18. C. Bodhibukkana, T. Srichana, S. Kaewnopparat, N. Tangthong, P. Bouking, G.P. Martin, R. Suedee, Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol, J. Control. Release., 113 (2006) 43-56.
  • 19. L. Ye, Synthetic strategies in molecular imprinting. Adv. Biochem. Eng. Biotechnol., 150 (2015) 1-24.
  • 20. N. Idil, B. Mattiasson, Imprinting of Microorganisms for Biosensor Applications. Sensors, 17 (2017) 708.
  • 21. S. Asliyuce, B. Mattiasson, G. Mamo, Synthesis and use of protein G imprinted cryogel as affinity matrix to purify protein G from cell lyaste. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 1021 (2016) 204-212.
  • 22. S. Akgöl, D. Türkmen, A. Denizli, Cu(II)-incorporated, histidine-containing, magnetic-metal-complexing beads as specific sorbents for the metal chelate affinity of albumin, J. Appl. Polym. Sci., 93 (2004) 2669-2677.
  • 23. J. Li, Y. Wang, L. Zhang, Z. Xu, H. Dai, W. Wu, Nanocellulose/gelatin composite cryogels for controlled drug release, ACS Sustain. Chem. Eng., 7 (2019) 6381-6389.
  • 24. J.M. Anderson, In vivo biocompatibility of implantable delivery systems and biomaterials, Eur. J. Pharm. Biopharm., 40 (1994)
  • 25. L.Ye, Molecularly imprinted polymers with multi-functionality, Anal. Bioanal. Chem. 408 (2016) 1727-1733.
  • 26. C. Alvarez-Lorenzo, A. Concheiro, Molecularly imprinted polymers for drug delivery, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 804 (2017) 231-245.
  • 27. S. Kioomars, S. Heidari, B. Malaekeh-Nikouei, M. Shayani Rad, B. Khameneh, S. A. Mohajeri, Ciprofloxacin-imprinted hydrogels for drug sustained release in aqueous media, Pharm. Dev. Technol., 22 (2017)122-129.
  • 28. D. Silva, H.C. de Sousa, M. H. Gil, L.F. Santos, M.S.Oom, C. Alvarez-Lorenzo, B. Saramago, A.P. Serro, Moxifloxacin-imprinted silicone-based hydrogels as contact lens materials for extended drug release, Eur. J. Pharm. Sci., 156, (2021)105591.
  • 29. H. Kempe, A. P. Pujolràs, M. Kempe, Molecularly imprinted polymer nanocarriers for sustained release of erythromycin. Pharm. Res., 32 (2015) 375-388.
  • 30. E. Tamahkar, M. Bakhshpour, A Denizli, Molecularly imprinted composite bacterial cellulose nanofibers for antibiotic release, J. Biomater. Sci. Polym. Ed., 30 (2019) 450-461.