Retinitis Pigmentosada Retina Transplantasyonu, Kök Hücre ve Gen Tedavisi

Retinitis pigmentosa, herediter retina distrofileri içinde en sık görülenidir. Kliniği ve genetik geçişi oldukça çeşitlilik gösterir. Hastalığın semptomları sırayla gece körlüğü, tünel görme ve takiben tamamen körlük oluşumu şeklindedir. Neden olan genlerin gelişimsel ya da fonksiyonel işlevlerde görevleri vardır ve fenotipten sorumlu olan 120’den fazla gen mutasyonu bilinmektedir. Ayrıca aynı ailede, aynı gen içinde olan mutasyonların bile farklı fenotiplere yol açabildiği görülmekte; bu da genetik nedenlerin karmaşıklığını ortaya koymaktadır. Son yıllarda hastalığın patogenezinin anlaşılmasına yönelik gelişmeler, tedavide kök hücre ve gen tedavisi gibi etkin uygulamaların yapılmasını sağlamıştır. Bu derlemede kök hücre ve gen tedavilerinin klinik gelişimleri özetlenmiştir.

Retinal Transplantation, Stem Cell and Gene Therapy in Retinitis Pigmentosa

Retinitis pigmentosa is the most common hereditary retinal dystrophy which has marked clinical and genetic heterogeneity. Common presentations among this disorder include night blindness, tunnel vision, and subsequent progression to complete blindness respectively. The known causative disease genes have a variety of developmental and functional roles, with mutations in more than 120 genes shown to be responsible for the phenotypes. In addition, mutations within the same gene have been shown to cause different disease phenotypes, even within the same family, highlighting further levels of complexity. In recent years significant advancements have been made in the understanding of the pathogenesis of the disease and stem cell and gene replacement treatments have been proposed as potentially efficacious therapies. This review summarizes the clinical development of retinal stem cell and gene therapy.

Kaynakça

Dias MF, Joo K, Kemp JA, Fialho SL, da Silva Cunha Jr A, Woo SJ et al. Molecular genetics and emerging therapies for retinitis pigmentosa: basic research and clinical perspectives. Prog. Retin. Eye Res. 2018 ;63:107-131. doi: 10.1016/ j.preteyeres. 2017.10.004.

Shintani K, Shechtman DL, Gurwood AS. Review and update: Current treatment trends for patients with retinitis pigmentosa. Optometry 2009; 80(7): 384-401.

Smith LE. Bone marrow-derived stem cells preserve cone vision in retinitis pigmentosa. J Clin Invest. 2004;114(6):755-7.

Oner A, Gonen ZB, Sinim N, Cetin M, Ozkul Y. Subretinal adipose tissue-derived mesenchymal stem cell implantation in advanced stage retinitis pigmentosa: a phase I clinical safety study. Stem Cell Res Ther. 2016;7(1):178.

Oner A. Stem Cell Treatment in Retinal Diseases: Recent Developments. Turk J Ophthalmol. 2018; 48(1):33-38.

Zarbin M. Cell-Based Therapy for Degenerative Retinal Disease. Trends Mol Med. 2016; 22(2): 115-34.

Siqueira RC. Stem cell therapy for retinal diseases: update. Stem Cell Res Ther. 2011; 2(6): 50.

Shintani K, Shechtman DL, Gurwood AS. Review and update: Current treatment trends for patients with retinitis pigmentosa. Optometry 2009; 80(7):384-401.

Bennicelli J, Bennett J. Stem cells set their sights on retinitis pigmentosa. eLife 2013; 2:01291.

Uy HS, Chan PS, Cruz FM. Stem Cell Therapy: a Novel Approach for Vision Restoration in Retinitis Pigmentosa. Med Hypothesis Discov Innov Ophthalmol. 2013; 2(2):52-55.

Chung Y, Klimanskaya I, Becker S, Li T, Maserati M, Lu SJ, et al. Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell. 2008; 2(2): 113–117.

Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007; 318(5858): 1917–1920.

Tucker BA, Mullins RF, Stone EM. Stem cells for investigation and treatment of inherited retinal disease. Human Molecular Genetics. 2014; 23: Review Issue 1 R9–R16

Bharti, K. Patching the retina with stem cells. Nat. Biotechnol. 2018; 36(4): 311–313.

Tomita, M., Lavik, E., Klassen, H., Zahir, T., Langer, R., Young, M.J. Biodegradable polymer composite grafts promote the survival and differentiation of retinal progenitor cells. Stem Cells. 2005; 23(10): 1579–1588.

Park SS, Moisseiev E, Bauer G, Anderson JD, Grant MB, Zam A, et al. Advances in bone marrow stem cell therapy for retinal dysfunction. Prog. Retin. Eye Res. 2017; 56: 148–165.

Hirami Y, Osakada F, Takahashi K, Okita K, Yamanaka S, Ikeda H, et al. Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci. Lett. 2009; 458(3): 126–131.

Lamba DA, Karl MO, Ware CB, Reh TA. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc. Natl. Acad. Sci. U.S.A. 2006; 103(34): 12769–12774.

Lamba DA, McUsic A, Hirata RK, Wang PR, Russell D, Reh TA. Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One 5. 2010; 5(1): e8763.

Osakada F, Ikeda H, Mandai M, Wataya T, Watanabe K, Yoshimura N, et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat. Biotechnol. 2008; 26(2): 215–224.

Santos-Ferreira T, Llonch S, Borsch O, Postel K, Haas J, Ader M. Retinal transplantation of photoreceptors results in donor-host cytoplasmic exchange. Nat. Commun. 2016; 7: 13028.

Santos-Ferreira T, Volkner M, Borsch O, Haas J, Cimalla P, Vasudevan P, et al. Stem cell-derived photoreceptor transplants differentially integrate into mouse models of cone-rod dystrophy. Investig. Ophthalmol. Vis. Sci. 2016; 57(7): 3509–3520.

Zhu J, Reynolds J, Garcia T, Cifuentes H, Chew S, Zeng X, et al. Generation of transplantable retinal photoreceptors from a current good manufacturing practice-manufactured human induced pluripotent stem cell line. Stem Cells Transl. Med. 2018; 7(2): 210–219.

Decembrini, S., Koch, U., Radtke, F., Moulin, A., Arsenijevic, Y. Derivation of traceable and transplantable photoreceptors from mouse embryonic stem cells. Stem Cell Rep. 2014; 2(6): 853–865.

Singh MS, Charbel Issa P, Butler R, Martin C, Lipinski DM, Sekaran S, et al. Reversal of end-stage retinal degeneration and restoration of visual function by photoreceptor transplantation. Proc. Natl. Acad. Sci. 2013; 110(3): 1101– 1106.

Singh MS, Balmer J, Barnard AR, Aslam SA, Moralli D, Green CM, et al. Transplanted photoreceptor precursors transfer proteins to host photoreceptors by a mechanism of cytoplasmic fusion. Nat. Commun. 2016; 7: 13537.

Barnea-Cramer AO, Wang W, Lu SJ, Singh MS, Luo C, Huo H, et al. Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice. Sci. Rep. 2016; 6(1): 29784-29784.

Pearson RA, Gonzalez-Cordero A, West EL, Ribeiro JR, Aghaizu N, Goh D et al. Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nat. Commun. 2016; 7: 13029.

Gamm DM, Wong R. Report on the national eye institute audacious goals initiative: photoreceptor regeneration and integration workshop. Transl. Vis. Sci. Technol. 2015; 4(6): 2.

Singh MS, Park SS, Albini TA, Canto-Soler MV, Klassen H, MacLaren RE, et al. Retinal stem cell transplantation: Balancing safety and potential. Prog Retin Eye Res. 2020; 75: 100779.

Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012; 379(9817): 713-20.

Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015; 385(9967):509-16.

Song WK, Park KM, Kim HJ, Lee JH, Choi J, Chong SY, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Reports. 2015;4(5):860-72.

Lamba DA, Gust J, Reh TA. Transplantation of human embryonic stem cell derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell. 2009; 4(1): 73–79.

West EL, Pearson RA, Duran Y, Gonzalez-Cordero A, MacLaren RE, Smith AJ, et al. Manipulation of the recipient retinal environment by ectopic expression of neurotrophic growth factors can improve transplanted photoreceptor integration and survival. Cell Transplant. 2012; 21(5): 871–887.

Gasparini SJ, Llonch S, Borsch O, Ader M. Transplantation of photoreceptors into the degenerative retina: Current state and future perspectives. Prog Retin Eye Res. 2019; 69: 1-37.

Lu B, Malcuit C, Wang S, Girman S, Francis P, Lemieux L, et al. Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells. 2009; 27(9): 2126–2135.

Schmitt S, Aftab U, Jiang C, Redenti S, Klassen H, Miljan E, et al. Molecular characterization of human retinal progenitor cells. Investig.Ophthalmol. Vis. Sci. 2009; 50(12): 5901–5908.

Hendrickson A, Bumsted-O’Brien K, Natoli R, Ramamurthy V, Possin D, Provis J. Rod photoreceptor differentiation in fetal and infant human retina. Exp. Eye Res. 2008; 87(5): 415–426.

Radtke ND, Aramant RB, Petry HM, Green PT, Pidwell DJ, Seiler MJ. Vision improvement in retinal degeneration patients by implantation of retina together with retinal pigment epithelium. Am. J. Ophthalmol. 2008; 146(2): 172–182.

Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J. Cell. Biochem. 2006; 98(5): 1076–1084

Bharti K, Rao M, Hull SC, Stroncek D, Brooks BP, Feigal E, et al. Cellular therapies for retinal degenerative diseases. Invest Ophthalmol Vis Sci. 2014;55(2):1191-1202.

Ryan JM, Barry FP, Murphy JM, Mahon BP. Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond). 2005; 2: 8.

Chen PM, Yen ML, Liu KJ, Sytwu HK, Yen BL. Immunomodulatory properties of human adult and fetal multipotent mesenchymal stem cells. J Biomed Sci 2011;18(1):49

Guan Y, Cui L, Qu Z, Lu L, Wang F, Wu Y, et al. Subretinal transplantation of rat MSCs and erythropoietin gene modified rat MSCs for protecting and rescuing degenerative retina in rats. Curr Mol Med. 2013; 13(9): 1419-1431.

Weiss JN, Levy S. Stem Cell Ophthalmology Treatmen Study: Bone marrow derived stem cells in the treatment of retinitis pigmentosa. Stem Cell Investig. 2018; 5: 18.

Castanheira P, Torquetti L, Nehemy MB, Goes AM. Retinal incorporation and differentiation of mesenchymal stem cells intravitreally injected in the injured retina of rats. Arq Bras Oftalmol. 2008; 71(5): 644-650.

Haddad-Mashadrizeh A, Bahrami AR, Matin MM, Edalatmanesh MA, Zomorodipour A, Gardaneh M, et al. Human adipose-derived mesenchymal stem cells can survive and integrate into the adult rat eye following xenotransplantation. Xenotransplantation. 2013; 20(3): 165-76.

Tomita M.,Mori T, Maruyama K, ZahirT, Ward M, Umezewa A, Young MJ. A Comparison of Neural Differentiation and Retinal Transplantation with Bone Marrow-Derived Cells and Retinal Progenitor Cells. Stem Cells. 2006; 24(10): 2270–2278.

Kuriyan AE, Albini TA, Townsend JH, Rodriguez M, Pandya HK, Leonard RE 2nd, et. al. Vision Loss after Intravitreal Injection of Autologous “Stem Cells” for AMD. N Engl J Med. 2017;376(11):1047-53.

Satarian L, Nourinia R, Safi S, Kanavi MR, Jarughi N, Daftarian N, et. al. Intravitreal Injection of Bone Marrow Mesenchymal Stem Cells in Patients with Advanced Retinitis Pigmentosa; a Safety Study. J Ophthalmic Vis Res 2017;12(1):58-64.

Rong, AJ, Lam BL, Ansari ZA, Albini TA. Vision loss secondary to autologous adipose stem cell injections: a rising problem. JAMA Ophthalmol. 2018; 136(1), 97–99.

Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ. Res. 2007; 100(9): 1249–1260.

Limoli PG, Vingolo EM, Limoli C, Nebbioso M. Stem cell surgery and growth factors in retinitis pigmentosa patients: Pilot study after literature eview. Biomedicines. 2019; 30;7(4).94.

Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, et al. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells. 2006;24(3):781-92.

Lund RD, Wang S, Lu B, Girman S, Holmes T, Sauve Y, Messina DJ, et al. Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. Stem Cells. 2007; 25(3): 602–611.

Özmert E, Arslan U. Management of retinitis pigmentosa by Wharton’s jelly derived mesenchymal stem cells: preliminary clinical results. Stem Cell Res Ther. 2020; 13;11(1):25.

Kahraman NS, Oner A. Umbilical Cord Derived Mesenchymal Stem Cell Implantation In Patients With Retinitis Pigmentosa: 6-month Follow-up Results of a Phase 3 Trial. IJO. (In Press)

Park SS. Cell therapy applications for retinal vascular diseases: diabetic retinopathy and retinal vein occlusion. Investig. Ophthalmol. Vis. Sci. 2016; 57(5): 1-10.

Siqueira RC, Messias A, Voltarelli JC, Scott IU, Jorge R. Intravitreal injection of autologous bone marrow-derived mononuclear cells for hereditary retinal dystrophy: a phase I trial. Retina. 2011; 31(6):1207–14.

Siqueira RC, Messias A, Messias K, Arcieri RS, Ruiz MA, Souza NF, et al. Quality of life in patients with retinitis pigmentosa submitted to intravitreal use of bone marrow-derived stem cells (Reticell -clinical trial) Stem Cell Research & Therapy. 2015; 6(1):29.

Park SS, Bauer G, Abedi M, Pontow S, Panorgias A, Jonnal R, et al. Intravitreal autologous bone marrow CD34+ cell therapy for ischemic and degenerative retinal disorders: preliminary phase 1 clinical trial findings. Invest Ophthalmol Vis Sci. 2014; 56(1): 81–89.

Ku CA, Pennesi ME. Retinal Gene Therapy: Current Progress and Future Prospects. Expert Rev Ophthalmol. 2015;10(3):281-299.

Ramlogan-Steel CA, Murali A, Andrzejewski S, Dhungel B, Steel JC, Layton CJ. Gene therapy and the adeno-associated virus in the treatment of genetic and acquired ophthalmic diseases in humans: Trials, future directions and safety considerations. Clin Exp Ophthalmol. 2019;47(4):521–536. Oner A. Recent Advancements in Gene Therapy for Hereditary Retinal Dystrophies. Turk J Ophthalmol 2017;47(6):338-343.

Ciulla TA, Hussain RM, Berrocal AM, Nagiel A. Voretigene neparvovec-rzyl for treatment of RPE65-mediated inherited retinal diseases: a model for ocular gene therapy development. Expert Opin Biol Ther. 2020; 20(6): 565-578.

LUXTURNA (voretigene neparvovec-rzyl) US Full Prescribing Information. 2017; Available from: http://sparktx.com/LUXTURNA_US_Prescribing_Information.pdf.

Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med. 2008; 358(21): 2231-9.

Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L, et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther. 2008; 19(10): 979-90.

Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2240-8.

Maguire AM, High KA, Auricchio A, Wright JF, Pierce EA, Testa F, et al. Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: a phase 1 dose-escalation trial. Lancet. 2009;374(9701):1597-605.

Testa F, Maguire AM, Rossi S, Pierce EA, Melillo P, Marshall K, et al. Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital Amaurosis type 2. Ophthalmology. 2013;120(6):1283-91.

Maguire AM, Russell S, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy, Safety, and Durability of Voretigene Neparvovec-rzyl in RPE65 Mutation-Associated Inherited Retinal Dystrophy: Results of Phase 1 and 3 Trials. Ophthalmology. 2019; 126(9): 1273-1285.

Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 2017; 390(10097): 849-60.

Jacobson SG, Cideciyan AV, Roman AJ, Sumaroka A, Schwartz SB, Heon E, et al. Improvement and decline in vision with gene therapy in childhood blindness. N Engl J Med 2015; 372(20): 1920-6.

Bainbridge JW, Mehat MS, Sundaram V, Robbie SJ, Barker SE, Ripamonti C, et al. Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med 2015; 372(20): 1887-97.

Johnson S, Buessing M, O’Connell T, Pitluck S, Ciulla TA. Cost-effectiveness of Voretigene Neparvovec-rzyl vs Standard Care for RPE65-Mediated Inherited Retinal Disease. JAMA Ophthalmol. 2019; 137(10): 1115–23.

LaVail MM, Yasumura D, Matthes MT, Yang H, Hauswirth WW, Deng WT, Vollrath D Gene Therapy for MERTK-Associated Retinal Degenerations. Adv Exp Med Biol. 2016;854:487-493.

Ghazi NG, Abboud EB, Nowilaty SR, et al. Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial. Hum Genet. 2016;135(3):327‐343.

Moore NA, Morral N, Ciulla TA, Bracha P. Gene therapy for inherited retinal and optic nerve degenerations. Expert Opin Biol Ther 2018; 18(1): 37-49.

Pawlyk BS, Bulgakov OV, Sun X, Adamian M, Shu X, Smith AJ, et al. Photoreceptor rescue by an abbreviated human RPGR gene in a murine model of X-linked retinitis pigmentosa. Gene Ther 2016; 23(2): 196-204.

Kaynak Göster