Retinitis Pigmentosa Tedavisinde Retinal Protez

Retinal protezler, çevreden görsel uyarıyı alan ve bunu işlemden geçiren, fonksiyonel olarak etkili bir görsel cevap oluşturmak amacıyla hastalıklı retina bölgesini uyaran cihazlardır. Bu cihazların implantasyon endikasyonlarını dış retina katı dejenerasyonları oluşturmaktadır ki bunlar; retinitis pigmentosa, koroideremi, rod-kon distrofisi gibi herediter retina hastalıklar ve yaşa bağlı makula dejenerasyonuna bağlı coğrafik atrofi veya fibrozis gibi edinsel makula hastalıklarıdır. Günümüzde insanlara uygulanmış olan retinal protezlerin yaklaşımları; epiretinal, subretinal, suprakoroidal ve skleral (transskleral suprakoroidal) olarak sınıflandırılabilmektedir. Bu yazıda retinal protez konusunda klinik uygulaması olan projeler, çalışma sonuçları ve son durumları ele alınacaktır.

Retinal Prosthesis in the Treatment of Retinitis Pigmentosa

Retinal prostheses are devices that receive environmental visual stimulus, process it and stimulate degenerated retinal area in order to produce a functionally efficient visual perception. Indications for implantation of these devices include hereditary retinal degenerations like retinitis pigmentosa, choroideremia, rod-cone dystrophy and acquired macular diseases like geographic atrophy or fibrosis due to age related macular degeneration. Clinically applied retinal prosthesis approaches can be classified as; epiretinal, subretinal, suprachoroidal and scleral (transscleral suprachoroidal). In this paper, approaches of retinal prosthesis research groups, results of clinical trials and latest advances in their projects will be provided.

Kaynakça

Elmannai W, Elleithy K. Sensor-based assistive devices for visually-impaired people: current status, challenges, and future directions. Sensors 2017;17(3):565.

Ayton LN, Barnes N, Dagnelie G, Fujikado T, Goetz G, Hornig R, et al. An update on retinal prostheses. Clin Neurophysiol. 2019;1388-2457(19)313264.

Humayun MS, de Juan E Jr. Artificial vision. Eye (Lond). 1998;12(Pt 3b):605-7.

Stone JL, Barlow WE, Humayun MS, de Juan E Jr, Milam AH. Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch Ophthalmol. 1992;110(11):1634-9.

Humayun MS, Prince M, de Juan E Jr, Barron Y, Moskowitz M, Klock IB, et al. Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa.Invest Ophthalmol Vis Sci. 1999;40(1):143-8.

Kim SY, Sadda S, Pearlman J, Humayun MS, de Juan E Jr, Melia BM, et al. Morphometric analysis of the macula in eyes with disciform age-related macular degeneration. Retina. 2002;22(4):471-7.

Kim SY, Sadda S, Humayun MS, de Juan E Jr, Melia BM, Green WR. Morphometric analysis of the macula in eyes with geographic atrophy due to age-related macular degeneration. Retina. 2002;22(4):464-70.

Gerding H. A new approach towards a minimal invasive retina implant. J Neural Eng. 2007;4(1):30-7.

Dagnelie G, Keane P, Narla V, Yang L, Weiland J, Humayun M. Real and virtual mobility performance in simulated prosthetic vision. J Neural Eng. 2007;4(1):92-101.

Dagnelie G. Psychophysical evaluation for visual prosthesis. Annu RevBiomed Eng. 2008; 10:339-68.

Güven D. Yapay göze doğru. Turkiye Klinikleri J Ophthalmol. 1998;7(3):214-21.

Güven D, Weiland JD, Humayun MS. Retinal protezler. Ret-Vit 2005; 13(4):247-256.

Güven D. Retinal protezler. In: Önol M, Evren Ö, Özdemir Y, Aslan Ö, Atilla H, Gürdal C ve ark. Eds. TOD. 28. Ulusal Oftalmoloji Kursu Retina: Güncel Tanı ve Tedavi, 2008;189-206.

Güven D. Retinal protezler. Turkiye Klinikleri J Ophthalmol-Special Topics. 2009;2(2):93-8.

Güven D. Retinal protezler. Ret-Vit 2010;18(4):17-23.

Ghodasra DH, Chen A, Arevalo JF, Birch DG, Branham K, Coley B, et al. Worldwide Argus II implantation: recommendations to optimize patient outcomes. BMC Ophthalmol. 2016 May 6; 16:52.

Ahuja AK ,Yeoh J, Dorn JD, Caspi A, Wuyyuru V, McMahon MJ, et al. Factors Affecting Perceptual Threshold in Argus II Retinal Prosthesis Subjects. Transl Vis Sci Technol. 2013;2(4):1.

Güven D, Demir M, Üke Uzun S, Ergen E, Tiryaki Demir S, Demir AG, et al. Argus II retinal protez için aday taraması yapılan retinitis pigmentosa hastalarının demografik ve klinik özelliklerinin değerlendirilmesi. RetVit 2016; 24(1):61-9.

Seider MI, Hahn P. Argus II retinal prosthesis malrotation and repositioning with intraoperative optical coherence tomography in a posterior staphyloma. Clin Ophthalmol. 2015;9:2213-6.

Montezuma SR, Tang PH, van Kuijk FJ, Drayna P, Koozekanani DD. Implantation of the Argus II Retinal Prosthesis in an Eye With Short Axial Length. Ophthalmic Surg Lasers Imaging Retina. 2016;47(4):369-71.

Yue L, Wuyyuru V, Gonzalez-Calle A, Dorn JD, Humayun MS. Retina-electrode interface properties and vision restoration by two generations of retinal prostheses in one patient-one in each eye. J Neural Eng. 2020;17(2):026020.

Demchinsky AM, Shaimov TB, Goranskaya DN, Moiseeva IV, Kuznetsov DI, Kuleshov DS, et al. The first deaf-blind patient in Russia with Argus II retinal prosthesis system: what he sees and why. J Neural Eng. 2019;16(2):025002.

Schaffrath K, Schellhase H, Walter P, Augustin A, Chizzolini M, Kirchhof B, et al. One-Year Safety and Performance Assessment of the Argus II Retinal Prosthesis: A Postapproval Study. JAMA Ophthalmol. 2019 ; 37(8): 896-902.

Bloch E, Luo Y, da Cruz L. Advances in retinal prosthesis systems. Ther Adv Ophthalmol. 2019;11:2515841418817501.

Humayun MS, Dorn JD, Ahuja AK, Caspi A, Filley E, Dagnelie G, et al. Preliminary 6 month results from the Argus II epiretinal prosthesis feasibility study. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:4566-8.

Dorn JD, Ahuja AK, Caspi A, da Cruz L, Dagnelie G, Sahel JA, et al. The detection of motion by blind subjects with the epiretinal 60-electrode (Argus II) retinal prosthesis. JAMA Ophthalmol. 2013;131(2):183–9.

Ahuja AK, Dorn JD, Caspi A, McMahon MJ, Dagnelie G, Dacruz L, et al. Blind subjects implanted with the Argus II retinal prosthesis are able to improve performance in a spatial-motor task. Br J Ophthalmol. 2011;95(4):539-43.

Humayun MS, Dorn JD, da Cruz L, Dagnelie G, Sahel JA, Stanga PE, et al.; Argus II Study Group. Interim results from the international trial of Second Sight’s visual prosthesis.Ophthalmology. 2012;119(4):779-88.

Ho AC, Humayun MS, Dorn JD, da Cruz L, Dagnelie G, Handa J, et al. Longterm results from an epiretinal prosthesis to restore sight to the blind. Ophthalmology. 2015;122(8):1547-54.

da Cruz L, Dorn JD, Humayun MS, Dagnelie G, Handa J, Barale PO, et al. Five year safety and performance results from the Argus II Retinal Prosthesis System clinical trial. Ophthalmology. 2016;123(10):2248-54.

Luo YH, Zhong JJ, da Cruz L. The use of Argus® II retinal prosthesis by blind subjects to achieve localisation and prehension of objects in 3-dimensional space. Graefes Arch Clin Exp Ophthalmol. 2015;253(11):1907-14.

Dagnelie G, Christopher P, Arditi A, da Cruz L, Duncan JL, Ho AC, et al. Performance of real-world functional vision tasks by blind subjects improves after implantation with the Argus® II retinal prosthesis system. Clin Exp Ophthalmol. 2017;45(2):152-9.

Luo YH, Zhong JJ, Clemo M, da Cruz L. Longterm repeatability and reproducibility of phosphene characteristics in chronically implanted Argus II retinal prosthesis subjects. Am J Ophthalmol. 2016;170:100-9.

Paulo S, José S, Lyndon C. Patients blinded by outer retinal dystrophies are able to perceive simultaneous colors using the Argus(R) II retinal prosthesis system. Arvo Meeting Abstr. 2012; 53.

da Cruz L, Coley BF, Dorn J, Merlini F, Filley E, Christopher P, et al.; Argus II Study Group. The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Br J Ophthalmol. 2013;97(5):632-6.

Rizzo S, Belting C, Cinelli L, Allegrini L, Genovesi-Ebert F, Barca F, et al. The Argus II Retinal Prosthesis: 12-month outcomes from a single-study center. Am J Ophthalmol. 2014;157(6):1282-90.

Rizzo S, Belting C, Cinelli L, Allegrini L. Visual field changes following implantation of the Argus II retinal prosthesis. Graefes Arch Clin Exp Ophthalmol. 2015;253(2):323-5.

Delyfer MN, Gaucher D, Govare M, Cougnard-Grégoire A, Korobelnik JF, Ajana S, et al. Adapted Surgical Procedure for Argus II Retinal Implantation: Feasibility, Safety, Efficiency, and Postoperative Anatomic Findings. Ophthalmol Retina. 2018;2(4):276-87.

Seuthe AM, Haus A, Januschowski K, Szurman P. First Simultaneous Explantation and Re-Implantation of an Argus II Retinal Prosthesis System. Ophthalmic Surg Lasers Imaging Retina. 2019;50(7):462-5.

Rizzo S, Cinelli L, Finocchio L, Tartaro R, Santoro F, Gregori NZ. Assessment of Postoperative Morphologic Retinal Changes by Optical Coherence Tomography in Recipients of an Electronic Retinal Prosthesis Implant. JAMA Ophthalmol. 2019;137(3):272-8.

Rizzo S, Barale PO, Ayello-Scheer S, Devenyi RG, Delyfer MN, Korobelnik JF, et al. Adverse events of the Argus II retinal prosthesis: Incidence, Causes, and Best Practices for Managing and Preventing Conjunctival Erosion. Retina. 2020;40(2):303-11.

Rizzo S, Barale PO, Ayello-Scheer S, Devenyi RG, Delyfer MN, Korobelnik JF, et al. Hypotony and the Argus II retinal prosthesis: causes, prevention and management. Br J Ophthalmol. 2020;104(4):518-23.

Güven D, Demir M, Özcan D, Kaçar H, Demir ST, Uzun SÜ. Multimodal Imaging Including Optical Coherence Tomography Angiography of a Patient With Argus II Retinal Prosthesis One Year After Implantation. Ophthalmic Surg Lasers Imaging Retina. 2018;49(1):55-9.

Lin TC, Wang LC Yue L, Zhang Y, Falabella P, Zhu D, et al. Histopathologic Assessment of Optic Nerves and Retina From a Patient With Chronically Implanted Argus II Retinal Prosthesis System. Transl Vis Sci Technol. 2019;8(3):31.

Bloch E, Luo Y, da Cruz L. Advances in retinal prosthesis systems. Ther Adv Ophthalmol. 2019;11:2515841418817501.

Muqit MMK, Velikay-Parel M, Weber M, Dupeyron G, Audemard D, Corcostegui B, et al. Six-Month Safety and Efficacy of the Intelligent Retinal Implant System II Device in Retinitis Pigmentosa. Ophthalmology. 2019;126(4):637-9.

Walter P. A fully intraocular approach for a bi-directional retinal prosthesis. In: Gabel, VP (ed.) Artificial vision. Cham: Springer, 2016, pp. 151–161.

Roessler G, Laube T, Brockmann C, Kirschkamp T, Mazinani B, Goertz M, et al. Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 prospective clinical trial. Invest Ophthalmol Vis Sci. 2009;50(6):3003-8.

Menzel-Severing J, Laube T, Brockmann C, Bornfeld N, Mokwa W, Mazinani B, et al. Implantation and explantation of an active epiretinal visual prosthesis: 2-year follow-up data from the EPIRET3 prospective clinical trial. Eye (Lond). 2012;26(4):501–9.

Waschkowski F, Hesse S, Rieck A, Lohmann T, Brockmann C, Laube T, et al. Development of very large electrode arrays for epiretinal stimulation (VLARS). Biomed Eng Online. 2014;13(1):11.

Chow AY, Chow VY, Packo KH, Pollack JS, Peyman GA, Schuchard R. The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol. 2004;122(4):460-9.

Stingl K, Bartz-Schmidt KU, Besch D, Braun A, Bruckmann A, Gekeler F, et al. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc Biol Sci. 2013;280(1757):20130077.

Stingl K, Bartz-Schmidt KU, Besch D, Chee CK, Cottriall CL, Gekeler F, et al. Subretinal visual implant Alpha IMS – clinical trial interim report. Vision Res. 2015; 111(Pt B):149–60.

Gekeler F, Sachs H, Kitiratschky VBD. Re-alignment and explantation of subretinal prostheses: surgical aspects and proteomic analyses. Invest Ophthalmol Vis Sci 2013; 54:1036.

Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel VP, et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci. 2011;278(1711):1489-97.

Edwards TL, Cottriall CL, Xue K, Simunovic MP, Ramsden JD, Zrenner E, et al. Assessment of the Electronic Retinal Implant Alpha AMS in Restoring Vision to Blind Patients with End-Stage Retinitis Pigmentosa. Ophthalmology. 2018;125(3):432-43.

Wang L, Mathieson K, Kamins TI, Loudin JD, Galambos L, Goetz G, et al. Photovoltaic retinal prosthesis: implant fabrication and performance. J Neural Eng. 2012;9(4):046014.

Lorach H and Palanker D. High resolution photovoltaic subretinal prosthesis for restoration of sight. In: Gabel VP (ed.) Artificial vision. Cham: Springer,2016;115-24.

Saunders AL, Williams CE, Heriot W, Briggs R, Yeoh J, Nayagam DA, et al. Development of a surgical procedure for implantation of a prototype suprachoroidal retinal prosthesis. Clin Exp Ophthalmol. 2014;42(7) 665–74.

Ayton LN, Blamey PJ, Guymer RH, Luu CD, Nayagam DA, Sinclair NC, et al. First in-human trial of a novel suprachoroidal retinal prosthesis. PLoS One. 2014;9(12):e115239.

Allen PJ, Ayton LN, Yeoh J, Briggs R, Nayagam D, Williams R, et al. A prototype suprachoroidal retinal prosthesis: device reliability and patient safety report of a 2 year clinical study. Invest Ophthalmol Vis Sci. 2015; 56:750.

Abbott CJ, Nayagam DAX, Luu CD, Epp SB, Williams RA, Salinas-LaRosa CM, et al. Safety Studies for a 44-channel suprachoroidal retinal prosthesis: a chronic passive study. Invest Ophthalmol Vis Sci. 2018;59(3):1410–24.

Fujikado T, Kamei M, Sakaguchi H, Kanda H, Morimoto T, Ikuno Y, et al. Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2011; 52:4726–33.

Fujikado T, Kamei M, Sakaguchi H, Kanda H, Endo T, Hirota M, et al. Oneyear outcome of 49-channel suprachoroidaltransretinal stimulation prosthesis in patients with advanced retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2016;57(14):6147–57.

Endo T, Fujikado T, Hirota M, Kanda H, Morimoto T, Nishida K, et al. Light localization with low-contrast targets in a patient implanted with a suprachoroidal-transretinal stimulation retinal prosthesis. Graefes Arch Clin Exp Ophthalmol. 2018;256(9):1723-9.

Rachitskaya A, Yuan A, Davidson S, Streicher M, DeBenedictis M, Rosenfeldt AB, et al. Computer-Assisted Immersive Visual Rehabilitation in Argus II Retinal Prosthesis Recipients. Ophthalmol Retina. 2019 Nov 15. pii: S2468-6530(19)30631-1.

Geruschat DR, Richards TP, Arditi A, da Cruz L, Dagnelie G, Dorn JD, et al. An analysis of observer-rated functional vision in patients implanted with the Argus II Retinal Prosthesis System at three years. Clin Exp Optom. 2016;99(3):227-32.

Dagnelie G, Jeter PE, Adeyemo O; PLoVR Study Group. Optimizing the ULV-VFQ for Clinical Use Through Item Set Reduction: Psychometric Properties and Trade-Offs. Transl Vis Sci Technol. 2017;6(3):12.

Wagner SK, Jolly JK, Pefkianaki M, Gekeler F, Webster AR, Downes SM, et al. Transcorneal electrical stimulation for the treatment of retinitis pigmentosa: results from the TESOLAUK trial. BMJ Open Ophthalmol. 2017;2(1): e000096.

Jolly JK, Wagner SK, Martus P, MacLaren RE, Wilhelm B, Webster AR, et al. Transcorneal electrical stimulation for the treatment of retinitis pigmentosa- a multicenter safety study of the OkuStim® System (TESOLA-study). Ophthalmic Res. 2019 Nov 26.

Mirochnik RM, Pezaris JS. Contemporary approaches to visual prostheses Mil Med Res. 2019;6(1):19.

Kaynak Göster