Leber Konjenital Amorozisi

Leber Konjenital Amorozisi (LKA), yaklaşık 150 yıl önce tanımlanan ve erken çocuklukta görme kaybıyla sonuçlanan, kalıtsal retina distrofilerinin en şiddetli olanlarından biridir. Doğumdan beri olan ya da bebeklik çağında başlayan görme kaybı, arayıcı nistagmus, zayıf ışık refleksi (amorotik pupil) ve tespit edilemez ya da ciddi azalmış tam-alan (full-field) ERG yanıtlarıyla karakterize olan hastalığın daha geç yaşlarda (genellikle 5 yaşından önce) başlayan “Ciddi Erken Çocukluk Çağı Başlangıçlı Retinal Distrofi” (CEBARD) olarak isimlendirilen daha hafif formlarının olduğu da bilinmektedir. LKA ve CEBARD klinik ve genetik olarak geniş çeşitlilik gösteren bir hastalık grubunu tanımlamaktadır. Günümüzde LKA/CEBARD’a sebep olduğu belirlenen 30 farklı gen mevcuttur ve tespit edilen bu genlerin hastalık spektrumunun yaklaşık %70-80’ini kapsadığı düşünülmektedir. Son yıllarda gen terapisi ile LKA/CEBARD tedavisinde ilk başarılı sonuçların bildirilmeye başlanması, hastalık grubunu araştırmaların ilgi odağı haline getirmiştir. Bu derlemede, LKA/CEBARD hastalığının genetik ve patofizyolojik temelleri, farklı genetik tiplerinin klinik özellikleri, tanısı, ayırıcı tanısı ve tedavisindeki güncel gelişmeler özetlenmektedir.

Leber Congenital Amaurosis

Leber Congenital Amaurosis (LCA) is one of the most severe forms of hereditary retinal dystrophies described approximately 150 years ago and is a cause of vision loss early in childhood. Although LCA is characterized by wandering nystagmus, poor pupillary reflex (amaurotic pupils), and undetectable or severely abnormal ERG responses in infancy, there is a milder form called as Severe Early Childhood Onset Retinal Dystrophy (SECORD) presenting after infancy usually before the age of five. LCA and SECORD describe a clinically and genetically diverse group of diseases. To date, there are 30 different genes determined to cause LCA/SECORD, and these genes are thought to account for approximately 70-80% of the disease spectrum. In recent years, with the initial successful results reported in treatment with gene therapy, LCA/SECORD has become the focus of new researches. This review summarizes the genetic and pathophysiological basis, different genetic types and their clinical findings, diagnosis, differential diagnosis and current developments in the treatment of LCA/SECORD.

Kaynakça

Tsang SH, Sharma T. Leber Congenital Amaurosis. Adv Exp Med Biol. 2018;1085:131-137.

Leber T. Ueber Retinitis pigmentosa und angeborene amaurose. Archiv für Ophthalmologie. 1869;15(3):1-25. Franceschetti A, Dieterlé P. Importance diagnostique et pronostique de l’électrorétinogramme (ERG) dans les dégénérescences tapéto-rétiniennes avec rétrécissement du champ visuel et héméralopie. Stereotactic and Functional Neurosurgery. 1954;14(2-3):184-186.

Leber T. Die Krankheiten der Netzhaut. In: Saemish T (ed). Graefe Handbuch der gesamten Augenheilkunde, 2nd ed: Leipzig, Germany: W. Engelman; 1916. pp 1076-1225.

Foxman SG, Heckenlively JR, Bateman JB, Wirtschafter JD. Classification of congenital and early onset retinitis pigmentosa. Arch Ophthalmol. 1985;103(10):1502-1506.

Hagstrom SA, North MA, Nishina PL, Berson EL, Dryja TP. Recessive mutations in the gene encoding the tubby-like protein TULP1 in patients with retinitis pigmentosa. Nat Genet. 1998;18(2):174-176.

Lorenz B, Gyürüs P, Preising M, Bremser D, Gu S, Andrassi M et al. Early-onset severe rod-cone dystrophy in young children with RPE65 mutations. Invest Ophthalmol Vis Sci. 2000;41(9):2735-2742.

Kumaran N, Moore AT, Weleber RG, Michaelides M. Leber congenital amaurosis/early-onset severe retinal dystrophy: clinical features, molecular genetics and therapeutic interventions. Br J Ophthalmol. 2017;101(9):1147-1154.

Weleber RG, Michaelides M, Trzupek KM, Stover NB, Stone EM. The phenotype of Severe Early Childhood Onset Retinal Dystrophy (SECORD) from mutation of RPE65 and differentiation from Leber congenital amaurosis. Invest Ophthalmol Vis Sci. 2011;52(1):292-302.

Miraldi Utz V, Coussa RG, Antaki F, Traboulsi EI. Gene therapy for RPE65-related retinal disease. Ophthalmic Genet. 2018;39(6):671-677.

Takkar B, Bansal P, Venkatesh P. Leber’s congenital amaurosis and gene therapy. Indian J Pediatr. 2018;85(3):237-242.

Gregory-Evans K, Weleber RG, Pennesi ME. Retinitis Pigmentosa and Allied Disorders. In: Schachat AP, Sadda SR (eds). Ryan’s Retina, 6th ed. Elsevier; 2018. pp 889-890.

Koenekoop RK. An overview of Leber congenital amaurosis: a model to understand human retinal development. Surv Ophthalmol. 2004;49(4):379-398.

Stone EM. Leber congenital amaurosis - a model for efficient genetic testing of heterogeneous disorders: LXIV Edward Jackson Memorial Lecture. Am J Ophthalmol. 2007;144(6):791-811.

Kondkar AA, Abu-Amero KK. Leber congenital amaurosis: Current genetic basis, scope for genetic testing and personalized medicine. Exp Eye Res. 2019;189:107834.

Sherwin JC, Hewitt AW, Ruddle JB, Mackey DA. Genetic isolates in ophthalmic diseases. Ophthalmic Genet. 2008;29(4):149-161.

Koenekoop RK, Lopez I, den Hollander AI, Allikmets R, Cremers FP. Genetic testing for retinal dystrophies and dysfunctions: benefits, dilemmas and solutions. Clin Exp Ophthalmol. 2007;35(5):473-485.

Henkes HE, Verduin PC. Dysgenesis or abiotrophy? A differentiation with the help of the electro-retinogram (ERG) and electro-oculogram (EOG) in Leber’s congenital amaurosis. Ophthalmologica. 1963;145:144-160.

Coussa RG, Lopez Solache I, Koenekoop RK. Leber congenital amaurosis, from darkness to light: An ode to Irene Maumenee. Ophthalmic Genet. 2017;38(1):7-15.

Alkharashi M, Fulton AB. Available Evidence on Leber Congenital Amaurosis and Gene Therapy. Semin Ophthalmol. 2017;32(1):14-21.

Online Mendelian Inheritence in Man (OMIM). Available at: https:// www.omim.org/search?index=entry&sort=score+desc%2C+prefix_ sort+desc&start=1&limit=10&search=leber+congenital+amaurosis. Accessed 10 June 2020.

Luscan R, Mechaussier S, Paul A, Tian G, Gérard X, Defoort-Dellhemmes S et al. Mutations in TUBB4B cause a distinctive sensorineural disease. Am J Hum Genet. 2017;101(6):1006-1012.

Kumaran N, Pennesi ME, Yang P, Trzupek KM, Schlechter C, Moore AT et al. Leber congenital amaurosis / early-onset severe retinal dystrophy overview. In: Adam MP, Ardinger HH, Pagon RA et al. (eds). GeneReviews(®). University of Washington, Seattle: Seattle (WA); 2018: 1993-2020.

Jan JE, Good WV, Freeman RD, Espezel H. Eye-poking. Dev Med Child Neurol. 1994;36(4):321-325.

Fazzi E, Signorini SG, Scelsa B, Bova SM, Lanzi G. Leber’s congenital amaurosis: an update. Eur J Paediatr Neurol. 2003;7(1):13-22.

Harris EW. Leber’s congenital amaurosis and RPE65. Int Ophthalmol Clin. 2001;41(1):73-82.

Perrault I, Hanein S, Gerber S, Lebail B, Vlajnik P, Barbet F et al. A novel mutation in the GUCY2D gene responsible for an early onset severe RP different from the usual GUCY2D-LCA phenotype. Hum Mutat. 2005;25(2):222.

Traboulsi EI, Maumenee IH. Photoaversion in Leber’s congenital amaurosis. Ophthalmic Genet. 1995;16(1):27-30.

Thompson DA, Gyürüs P, Fleischer LL, Bingham EL, McHenry CL, Apfelstedt-Sylla E et al. Genetics and phenotypes of RPE65 mutations in inherited retinal degeneration. Invest Ophthalmol Vis Sci. 2000;41(13):4293-4299.

Galvin JA, Fishman GA, Stone EM, Koenekoop RK. Evaluation of genotype-phenotype associations in leber congenital amaurosis. Retina. 2005;25(7):919-929.

Wagner RS, Caputo AR, Nelson LB, Zanoni D. High hyperopia in Leber’s congenital amaurosis. Arch Ophthalmol. 1985;103(10):1507-1509.

Dagi LR, Leys MJ, Hansen RM, Fulton AB. Hyperopia in complicated Leber’s congenital amaurosis. Arch Ophthalmol. 1990;108(5):709-712.

Heher KL, Traboulsi EI, Maumenee IH. The natural history of Leber’s congenital amoaurosis: age-related findings in 35 patients. Ophthalmology. 1992;99(2):241-245.

McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R et al. ISCEV standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol. 2015;130(1):1-12.

Tan MH, Mackay DS, Cowing J, Tran HV, Smith AJ, Wright GA et al. Leber congenital amaurosis associated with AIPL1: challenges in ascribing disease causation, clinical findings, and implications for gene therapy. PLoS One. 2012;7(3):e32330.

Preising MN, Hausotter-Will N, Solbach MC, Friedburg C, Rüschendorf F, Lorenz B. Mutations in RD3 are associated with an extremely rare and severe form of early onset retinal dystrophy. Invest Ophthalmol Vis Sci. 2012;53(7):3463-3472.

Chew E, Deutman A, Pinckers A, Aan de Kerk A. Yellowish flecks in Leber’s congenital amaurosis. Br J Ophthalmol. 1984;68(10):727-731.

Murayama K, Adachi-Usami E. Bilateral macular colobomas in Leber’s congenital amaurosis. Doc Ophthalmol. 1989;72(2):181-188.

Koenekoop RK, Wang H, Majewski J, Wang X, Lopez I, Ren H et al. Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease pathway for retinal degeneration. Nat Genet. 2012;44(9):1035-1039.

Schroeder R, Mets MB, Maumenee IH. Leber’s congenital amaurosis. Retrospective review of 43 cases and a new fundus finding in two cases.Arch Ophthalmol. 1987;105(3):356-359.

Lewis CA, Batlle IR, Batlle KG, Banerjee P, Cideciyan AV, Huang J et al. Tubby-like protein 1 homozygous splice-site mutation causes early-onset severe retinal degeneration. Invest Ophthalmol Vis Sci. 1999;40(9):2106-2114.

Pasadhika S, Fishman GA, Stone EM, Lindeman M, Zelkha R, Lopez I et al. Differential macular morphology in patients with RPE65-, CEP290-, GUCY2D-, and AIPL1-related Leber congenital amaurosis. Investigative ophthalmology & visual science. 2010;51(5):2608-2614.

Perrault I, Hanein S, Zanlonghi X, Serre V, Nicouleau M, Defoort-Delhemmes S et al. Mutations in NMNAT1 cause Leber congenital amaurosis with early-onset severe macular and optic atrophy. Nat Genet. 2012;44(9):975-977.

Babel J, Klein D, Roth A. Leber’s congenital amaurosis associated with high hyperopia in four sisters. Ophthalmic Paediatr Genet. 1989;10(1):55-61.

Elder MJ. Leber congenital amaurosis and its association with keratoconus and keratoglobus. J Pediatr Ophthalmol Strabismus. 1994;31(1):38-40.

Weleber RG, Francis PJ, Trzupek KM, Beattie C. Leber congenital amaurosis – Archived chapter, for historical reference only. In: Adam MP, Ardinger HH, Pagon RA et al. (eds). GeneReviews(®). University of Washington, Seattle.: Seattle (WA); 2013: 1993-2020.

Chung DC, Traboulsi EI. Leber congenital amaurosis: clinical correlations with genotypes, gene therapy trials update, and future directions. J aapos. 2009;13(6):587-592.

Chacon-Camacho OF, Zenteno JC. Review and update on the molecular basis of Leber congenital amaurosis. World J Clin Cases. 2015;3(2):112-124.

Chao DL, Burr A, Pennesi M. RPE65-related Leber congenital amaurosis / early-onset severe retinal dystrophy. In: Adam MP, Ardinger HH, Pagon RA et al. (eds). GeneReviews(®). University of Washington, Seattle.: Seattle (WA); 2019: 1993-2020.

Jacobson SG, Cideciyan AV, Peshenko IV, Sumaroka A, Olshevskaya EV, Cao L et al. Determining consequences of retinal membrane guanylyl cyclase (RetGC1) deficiency in human Leber congenital amaurosis en route to therapy: residual cone-photoreceptor vision correlates with biochemical properties of the mutants. Hum Mol Genet. 2013;22(1):168-183.

Perrault I, Rozet JM, Ghazi I, Leowski C, Bonnemaison M, Gerber S et al. Different functional outcome of RetGC1 and RPE65 gene mutations in Leber congenital amaurosis. Am J Hum Genet. 1999;64(4):1225-1228.

Redmond TM, Poliakov E, Yu S, Tsai JY, Lu Z, Gentleman S. Mutation of key residues of RPE65 abolishes its enzymatic role as isomerohydrolase in the visual cycle. Proc Natl Acad Sci U S A. 2005;102(38):13658-13663.

Lorenz B, Wabbels B, Wegscheider E, Hamel CP, Drexler W, Preising MN. Lack of fundus autofluorescence to 488 nanometers from childhood on in patients with early-onset severe retinal dystrophy associated with mutations in RPE65. Ophthalmology. 2004;111(8):1585-1594.

Perrault I, Hanein S, Gerard X, Delphin N, Fares-Taie L, Gerber S et al. Spectrum of SPATA7 mutations in Leber congenital amaurosis and delineation of the associated phenotype. Hum Mutat. 2010;31(3):E1241-1250.

Li Y, Wang H, Peng J, Gibbs RA, Lewis RA, Lupski JR et al. Mutation survey of known LCA genes and loci in the Saudi Arabian population. Invest Ophthalmol Vis Sci. 2009;50(3):1336-1343.

Mackay DS, Ocaka LA, Borman AD, Sergouniotis PI, Henderson RH, Moradi P et al. Screening of SPATA7 in patients with Leber congenital amaurosis and severe childhood-onset retinal dystrophy reveals disease-causing mutations. Invest Ophthalmol Vis Sci. 2011;52(6):3032-3038.

Dharmaraj S, Leroy BP, Sohocki MM, Koenekoop RK, Perrault I, Anwar K et al. The phenotype of Leber congenital amaurosis in patients with AIPL1 mutations. Arch Ophthalmol. 2004;122(7):1029-1037.

Aboshiha J, Dubis AM, van der Spuy J, Nishiguchi KM, Cheeseman EW, Ayuso C et al. Preserved outer retina in AIPL1 Leber’s congenital amaurosis: implications for gene therapy. Ophthalmology. 2015;122(4):862-864.

Mohamed MD, Topping NC, Jafri H, Raashed Y, McKibbin MA, Inglehearn CF. Progression of phenotype in Leber’s congenital amaurosis with a mutation at the LCA5 locus. Br J Ophthalmol. 2003;87(4):473-475.

Mackay DS, Borman AD, Sui R, van den Born LI, Berson EL, Ocaka LA et al. Screening of a large cohort of leber congenital amaurosis and retinitis pigmentosa patients identifies novel LCA5 mutations and new genotype-phenotype correlations. Hum Mutat. 2013;34(11):1537-1546.

Hanein S, Perrault I, Gerber S, Tanguy G, Barbet F, Ducroq D et al. Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis. Hum Mutat. 2004;23(4):306-317.

Dryja TP, Adams SM, Grimsby JL, McGee TL, Hong DH, Li T et al. Null RPGRIP1 alleles in patients with Leber congenital amaurosis. Am J Hum Genet. 2001;68(5):1295-1298.

Jacobson SG, Cideciyan AV, Aleman TS, Sumaroka A, Schwartz SB, Roman AJ et al. Leber congenital amaurosis caused by an RPGRIP1 mutation shows treatment potential. Ophthalmology. 2007;114(5):895-898.

Swaroop A, Wang QL, Wu W, Cook J, Coats C, Xu S et al. Leber congenital amaurosis caused by a homozygous mutation (R90W) in the homeodomain of the retinal transcription factor CRX: direct evidence for the involvement of CRX in the development of photoreceptor function. Hum Mol Genet. 1999;8(2):299-305.

Ehrenberg M, Pierce EA, Cox GF, Fulton AB. CRB1: one gene, many phenotypes. Semin Ophthalmol. 2013;28(5-6):397-405.

Bujakowska K, Audo I, Mohand-Saïd S, Lancelot ME, Antonio A, Germain A et al. CRB1 mutations in inherited retinal dystrophies. Hum Mutat. 2012;33(2):306-315.

Sundaresan P, Vijayalakshmi P, Thompson S, Ko AC, Fingert JH, Stone EM. Mutations that are a common cause of Leber congenital amaurosis in northern America are rare in southern India. Mol Vis. 2009;15:1781-1787.

Simonelli F, Ziviello C, Testa F, Rossi S, Fazzi E, Bianchi PE et al. Clinical and molecular genetics of Leber’s congenital amaurosis: a multicenter study of Italian patients. Invest Ophthalmol Vis Sci. 2007;48(9):4284-4290.

den Hollander AI, Heckenlively JR, van den Born LI, de Kok YJ, van der Velde-Visser SD, Kellner U et al. Leber congenital amaurosis and retinitis pigmentosa with Coats-like exudative vasculopathy are associated with mutations in the crumbs homologue 1 (CRB1) gene. Am J Hum Genet. 2001;69(1):198-203.

Jacobson SG, Cideciyan AV, Aleman TS, Pianta MJ, Sumaroka A, Schwartz SB et al. Crumbs homolog 1 (CRB1) mutations result in a thick human retina with abnormal lamination. Hum Mol Genet. 2003;12(9):1073-1078.

Henderson RH, Mackay DS, Li Z, Moradi P, Sergouniotis P, Russell-Eggitt I et al. Phenotypic variability in patients with retinal dystrophies due to mutations in CRB1. Br J Ophthalmol. 2011;95(6):811-817.

Yzer S, Hollander AI, Lopez I, Pott JW, de Faber JT, Cremers FP et al. Ocular and extra-ocular features of patients with Leber congenital amaurosis and mutations in CEP290. Mol Vis. 2012;18:412-425.

Sheck L, Davies WIL, Moradi P, Robson AG, Kumaran N, Liasis AC et al. Leber Congenital Amaurosis Associated with Mutations in CEP290, Clinical Phenotype, and Natural History in Preparation for Trials of Novel Therapies. Ophthalmology. 2018;125(6):894-903.

Bowne SJ, Sullivan LS, Mortimer SE, Hedstrom L, Zhu J, Spellicy CJ et al. Spectrum and frequency of mutations in IMPDH1 associated with autosomal dominant retinitis pigmentosa and leber congenital amaurosis. Invest Ophthalmol Vis Sci. 2006;47(1):34-42.

Mackay DS, Dev Borman A, Moradi P, Henderson RH, Li Z, Wright GA et al. RDH12 retinopathy: novel mutations and phenotypic description. Mol Vis. 2011;17:2706-2716.

Schuster A, Janecke AR, Wilke R, Schmid E, Thompson DA, Utermann G et al. The phenotype of early-onset retinal degeneration in persons with RDH12 mutations. Invest Ophthalmol Vis Sci. 2007;48(4):1824-1831.

Dev Borman A, Ocaka LA, Mackay DS, Ripamonti C, Henderson RH, Moradi P et al. Early onset retinal dystrophy due to mutations in LRAT: molecular analysis and detailed phenotypic study. Invest Ophthalmol Vis Sci. 2012;53(7):3927-3938.

Thompson DA, Li Y, McHenry CL, Carlson TJ, Ding X, Sieving PA et al. Mutations in the gene encoding lecithin retinol acyltransferase are associated with early-onset severe retinal dystrophy. Nat Genet. 2001;28(2):123-124.

den Hollander AI, Lopez I, Yzer S, Zonneveld MN, Janssen IM, Strom TM et al. Identification of novel mutations in patients with Leber congenital amaurosis and juvenile RP by genome-wide homozygosity mapping with SNP microarrays. Invest Ophthalmol Vis Sci. 2007;48(12):5690-5698.

Mataftsi A, Schorderet DF, Chachoua L, Boussalah M, Nouri MT, Barthelmes D et al. Novel TULP1 mutation causing leber congenital amaurosis or early onset retinal degeneration. Invest Ophthalmol Vis Sci. 2007;48(11):5160-5167.

Sergouniotis PI, Davidson AE, Mackay DS, Li Z, Yang X, Plagnol V et al. Recessive mutations in KCNJ13, encoding an inwardly rectifying potassium channel subunit, cause leber congenital amaurosis. Am J Hum Genet. 2011;89(1):183-190.

Pattnaik BR, Shahi PK, Marino MJ, Liu X, York N, Brar S et al. A novel KCNJ13 nonsense mutation and loss of Kir7.1 channel function causes Leber congenital amaurosis (LCA16). Hum Mutat. 2015;36(7):720-727.

Khan AO, Bergmann C, Neuhaus C, Bolz HJ. A distinct vitreo-retinal dystrophy with early-onset cataract from recessive KCNJ13 mutations. Ophthalmic Genet. 2015;36(1):79-84.

Asai-Coakwell M, March L, Dai XH, Duval M, Lopez I, French CR et al. Contribution of growth differentiation factor 6-dependent cell survival to early-onset retinal dystrophies. Hum Mol Genet. 2013;22(7):1432-1442.

Khan AO, Al Rashaed S, Neuhaus C, Bergmann C, Bolz HJ. Peripherin mutations cause a distinct form of recessive Leber congenital amaurosis and dominant phenotypes in asymptomatic parents heterozygous for the mutation. Br J Ophthalmol. 2016;100(2):209-215.

Yi Z, Ouyang J, Sun W, Xiao X, Li S, Jia X et al. Biallelic mutations in USP45, encoding a deubiquitinating enzyme, are associated with Leber congenital amaurosis. J Med Genet. 2019;56(5):325-331.

Jacobson SG, Cideciyan AV, Huang WC, Sumaroka A, Nam HJ, Sheplock R et al. Leber Congenital Amaurosis: Genotypes and Retinal Structure Phenotypes. Adv Exp Med Biol. 2016;854:169-175.

den Hollander AI, Roepman R, Koenekoop RK, Cremers FP. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res. 2008;27(4):391-419.

Pinckers AJ. Leber’s congenital amaurosis as conceived by Leber. Ophthalmologica. 1979;179(1):48-51.

Drivas TG, Holzbaur EL, Bennett J. Disruption of CEP290 microtubule/ membrane-binding domains causes retinal degeneration. J Clin Invest. 2013;123(10):4525-4539.

Khan AO, Bolz HJ, Bergmann C. Early-onset severe retinal dystrophy as the initial presentation of IFT140-related skeletal ciliopathy. J aapos. 2014;18(2):203-205.

Estrada-Cuzcano A, Koenekoop RK, Coppieters F, Kohl S, Lopez I, Collin RW et al. IQCB1 mutations in patients with leber congenital amaurosis. Invest Ophthalmol Vis Sci. 2011;52(2):834-839.

Dekaban AS. Mental retardation and neurologic involvement in patients with congenital retinal blindness. Dev Med Child Neurol. 1972;14(4):436-444.

Vaizey MJ, Sanders MD, Wybar KC, Wilson J. Neurological abnormalities in congenital amaurosis of Leber. Review of 30 cases. Arch Dis Child. 1977;52(5):399-402.

Schuil J, Meire FM, Delleman JW. Mental retardation in amaurosis congenita of Leber. Neuropediatrics. 1998;29(6):294-297.

Lambert SR, Kriss A, Taylor D, Coffey R, Pembrey M. Follow-up and diagnostic reappraisal of 75 patients with Leber’s congenital amaurosis. Am J Ophthalmol. 1989;107(6):624-631.

Perrault I, Rozet JM, Gerber S, Ghazi I, Leowski C, Ducroq D et al. Leber congenital amaurosis. Mol Genet Metab. 1999;68(2):200-208.

McEwen DP, Koenekoop RK, Khanna H, Jenkins PM, Lopez I, Swaroop A et al. Hypomorphic CEP290/NPHP6 mutations result in anosmia caused by the selective loss of G proteins in cilia of olfactory sensory neurons. Proc Natl Acad Sci U S A. 2007;104(40):15917-15922.

Boye SE, Boye SL, Lewin AS, Hauswirth WW. A comprehensive review of retinal gene therapy. Mol Ther. 2013;21(3):509-519.

Prado DA, Acosta-Acero M, Maldonado RS. Gene therapy beyond Luxturna: a new horizon of the treatment for inherited retinal disease. Curr Opin Ophthalmol. 2020;31(3):147-154.

Sanjurjo-Soriano C, Kalatzis V. Guiding lights in genome editing for inherited retinal disorders: Implications for gene and cell therapy. Neural Plast. 2018;2018:5056279.

Millington-Ward S, Chadderton N, O’Reilly M, Palfi A, Goldmann T, Kilty C et al. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther. 2011;19(4):642-649.

Peddle CF, MacLaren RE. The application of CRISPR/Cas9 for the treatment of retinal diseases. Yale J Biol Med. 2017;90(4):533-541.

Simunovic MP, Shen W, Lin JY, Protti DA, Lisowski L, Gillies MC. Optogenetic approaches to vision restoration. Exp Eye Res. 2019;178:15-26.

Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS, Cideciyan AV et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet. 2001;28(1):92-95.

Acland GM, Aguirre GD, Bennett J, Aleman TS, Cideciyan AV, Bennicelli J et al. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther. 2005;12(6):1072-1082.

Bemelmans AP, Kostic C, Crippa SV, Hauswirth WW, Lem J, Munier FL et al. Lentiviral gene transfer of RPE65 rescues survival and function of cones in a mouse model of Leber congenital amaurosis. PLoS Med. 2006;3(10):e347.

Maguire AM, Simonelli F, Pierce EA, Pugh EN, Jr., Mingozzi F, Bennicelli J et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2240-2248.

Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2231-2239.

Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther. 2008;19(10):979-990.

Maguire AM, High KA, Auricchio A, Wright JF, Pierce EA, Testa F et al. Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: a phase 1 dose-escalation trial. Lancet. 2009;374(9701):1597-1605.

Simonelli F, Maguire AM, Testa F, Pierce EA, Mingozzi F, Bennicelli JL et al. Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther. 2010;18(3):643-650.

Ashtari M, Cyckowski LL, Monroe JF, Marshall KA, Chung DC, Auricchio A et al. The human visual cortex responds to gene therapy-mediated recovery of retinal function. J Clin Invest. 2011;121(6):2160-2168.

Testa F, Maguire AM, Rossi S, Pierce EA, Melillo P, Marshall K et al. Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital Amaurosis type 2. Ophthalmology. 2013;120(6):1283-1291.

Bennett J, Wellman J, Marshall KA, McCague S, Ashtari M, DiStefano-Pappas J et al. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial. Lancet. 2016;388(10045):661-672.

Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849-860.

U.S. Food & Drug Administration. FDA approves novel gene therapy to treat patients with a rare form of inherited vision loss. Available at: https://www.fda.gov/news-events/press-announcements/fda-approves-novel-gene-therapy-treat-patients-rare-form-inherited-vision-loss. Accessed 10 June 2020.

European Medicines Agency. Luxturna Authorisation Details. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/luxturna. Accessed 10 June 2020.

Maguire AM, Russell S, Wellman JA, Chung DC, Yu ZF, Tillman A et al. Efficacy, safety, and durability of voretigene neparvovec-rzyl in RPE65 mutation-associated inherited retinal dystrophy: results of phase 1 and 3 trials. Ophthalmology. 2019;126(9):1273-1285.

Bainbridge JW, Mehat MS, Sundaram V, Robbie SJ, Barker SE, Ripamonti C et al. Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med. 2015;372(20):1887-1897.

Jacobson SG, Cideciyan AV, Ratnakaram R, Heon E, Schwartz SB, Roman AJ et al. Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol. 2012;130(1):9-24.

Cideciyan AV, Jacobson SG, Beltran WA, Sumaroka A, Swider M, Iwabe Set al. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc Natl Acad Sci U S A. 2013;110(6):E517-525.

Jacobson SG, Cideciyan AV, Roman AJ, Sumaroka A, Schwartz SB, Heon E et al. Improvement and decline in vision with gene therapy in childhood blindness. N Engl J Med. 2015;372(20):1920-1926.

Pennesi ME, Weleber RG, Yang P, Whitebirch C, Thean B, Flotte TR et al. Results at 5 years after gene therapy for RPE65-deficient retinal dystrophy. Hum Gene Ther. 2018;29(12):1428-1437.

Weleber RG, Pennesi ME, Wilson DJ, Kaushal S, Erker LR, Jensen L et al. Results at 2 years after gene therapy for RPE65-deficient Leber congenital amaurosis and severe early-childhood-onset retinal dystrophy. Ophthalmology. 2016;123(7):1606-1620.

Le Meur G, Lebranchu P, Billaud F, Adjali O, Schmitt S, Bézieau S et al. Safety and long-term efficacy of AAV4 gene therapy in patients with RPE65 Leber congenital amaurosis. Mol Ther. 2018;26(1):256-268.

Wang X, Yu C, Tzekov RT, Zhu Y, Li W. The effect of human gene therapy for RPE65-associated Leber’s congenital amaurosis on visual function: a systematic review and meta-analysis. Orphanet J Rare Dis. 2020;15(1):49.

Arslan U, Özmert E, Demirel S. Effects of subtenon-injected autologous platelet-rich plasma on visual functions in eyes with retinitis pigmentosa: preliminary clinical results. Graefes Arch Clin Exp Ophthalmol. 2018;256(5):893-908.

Kahraman N, Öner A. Subtenon injection of autologous platelet-rich plasma in retinitis pigmentosa: Is it a new therapeutic option? Open J Ophthalmol. 2020;10(1):77-88.

Moiseyev G, Chen Y, Takahashi Y, Wu BX, Ma JX. RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc Natl Acad Sci U S A. 2005;102(35):12413-12418.

Van Hooser JP, Liang Y, Maeda T, Kuksa V, Jang GF, He YG et al. Recovery of visual functions in a mouse model of Leber congenital amaurosis. J Biol Chem. 2002;277(21):19173-19182.

Maeda T, Dong Z, Jin H, Sawada O, Gao S, Utkhede D et al. QLT091001, a 9-cis-retinal analog, is well-tolerated by retinas of mice with impaired visual cycles. Invest Ophthalmol Vis Sci. 2013;54(1):455-466.

Scholl HP, Moore AT, Koenekoop RK, Wen Y, Fishman GA, van den Born LI et al. Safety and proof-of-concept study of oral QLT091001 in retinitis pigmentosa due to inherited deficiencies of retinal pigment epithelial 65 protein (RPE65) or lecithin:retinol acyltransferase (LRAT). PLoS One. 2015;10(12):e0143846.

Hussain RM, Gregori NZ, Ciulla TA, Lam BL. Pharmacotherapy of retinal disease with visual cycle modulators. Expert Opin Pharmacother. 2018;19(5):471-481.

Haire SE, Pang J, Boye SL, Sokal I, Craft CM, Palczewski K et al. Light-driven cone arrestin translocation in cones of postnatal guanylate cyclase-1 knockout mouse retina treated with AAV-GC1. Invest Ophthalmol Vis Sci. 2006;47(9):3745-3753.

Boye SE, Boye SL, Pang J, Ryals R, Everhart D, Umino Y et al. Functional and behavioral restoration of vision by gene therapy in the guanylate cyclase-1 (GC1) knockout mouse. PLoS One. 2010;5(6):e11306.

Boye SL, Peshenko IV, Huang WC, Min SH, McDoom I, Kay CN et al. AAV-mediated gene therapy in the guanylate cyclase (RetGC1/RetGC2) double knockout mouse model of Leber congenital amaurosis. Hum Gene Ther. 2013;24(2):189-202.

Cideciyan AV, Jacobson SG. Effect of an intravitreal antisense oligonucleotide on vision in Leber congenital amaurosis due to a photoreceptor cilium defect. Nat Med. 2019;25(2):225-228.

Ledford H. CRISPR treatment inserted directly into the body for first time. Nature. 2020;579(7798):185.

Tan MH, Smith AJ, Pawlyk B, Xu X, Liu X, Bainbridge JB et al. Gene therapy for retinitis pigmentosa and Leber congenital amaurosis caused by defects in AIPL1: effective rescue of mouse models of partial and complete Aipl1 deficiency using AAV2/2 and AAV2/8 vectors. Hum Mol Genet. 2009;18(12):2099-2114.

Sun X, Pawlyk B, Xu X, Liu X, Bulgakov OV, Adamian M et al. Gene therapy with a promoter targeting both rods and cones rescues retinal degeneration caused by AIPL1 mutations. Gene Ther. 2010;17(1):117-131.

Feathers KL, Jia L, Perera ND, Chen A, Presswalla FK, Khan NW et al. Development of a Gene Therapy Vector for RDH12-Associated Retinal Dystrophy. Hum Gene Ther. 2019;30(11):1325-1335.

Pawlyk BS, Smith AJ, Buch PK, Adamian M, Hong DH, Sandberg MA et al. Gene replacement therapy rescues photoreceptor degeneration in a murine model of Leber congenital amaurosis lacking RPGRIP. Invest Ophthalmol Vis Sci. 2005;46(9):3039-3045.

Pawlyk BS, Bulgakov OV, Liu X, Xu X, Adamian M, Sun X et al. Replacement gene therapy with a human RPGRIP1 sequence slows photoreceptor degeneration in a murine model of Leber congenital amaurosis. Hum Gene Ther. 2010;21(8):993-1004.

Lhériteau E, Petit L, Weber M, Le Meur G, Deschamps JY, Libeau L et al. Successful gene therapy in the RPGRIP1-deficient dog: a large model of cone-rod dystrophy. Mol Ther. 2014;22(2):265-277.

Kaynak Göster